SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION
暂无分享,去创建一个
M. S. Burns | W. M. Wood-Vasey | I. Hook | P. Astier | K. Dawson | W. Wood-Vasey | N. Yasuda | A. Conley | P. Nugent | D. Howell | A. Kim | J. Meyers | D. Rubin | A. Goobar | G. Aldering | H. Fakhouri | J. Nordin | R. Pain | S. Perlmutter | N. Suzuki | L. Wang | K. Barbary | M. Doi | T. Morokuma | L. Ostman | R. Amanullah | G. Aldering | S. Perlmutter | P. Ruiz-Lapuente | M. Doi | G. Goldhaber | D. Groom | S. Deustua | S. Fabbro | R. Knop | C. Lidman | N. Panagia | E. Linder | G. Folatelli | R. Pain | A. Spadafora | G. Garavini | S. Nobili | J. Raux | N. Kashikawa | M. Strovink | H. Furusawa | A. Fruchter | C. Lidman | E. Linder | R Amanullah | L. Faccioli | N. Suzuki | L. Östman | M. Kowalski | P. Ruíz-Lapuente
[1] M. Raddick,et al. The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.
[2] M. S. Burns,et al. Spectroscopic confirmation of high-redshift supernovae with the ESO VLT , 2004, astro-ph/0410506.
[3] M. Strovink. Diversity of Decline Rate-corrected Type Ia Supernova Rise Times: One Mode or Two? , 2007, 0705.0726.
[4] Correcting for lensing bias in the Hubble diagram , 2002, astro-ph/0204280.
[5] A. Goobar,et al. Lensing Magnification of Supernovae in the GOODS Fields , 2005, astro-ph/0506765.
[6] N. B. Suntzeff,et al. Constraining Cosmic Evolution of Type Ia Supernovae , 2007, 0710.2338.
[7] Kevin Krisciunas,et al. THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE , 2009, 0910.3317.
[8] R. Kirshner,et al. SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA , 2009, 0912.0263.
[9] T. Matheson,et al. A SECOND CASE OF VARIABLE Na i D LINES IN A HIGHLY REDDENED TYPE Ia SUPERNOVA , 2008, 0811.0002.
[10] Q-ball dynamics from atomic Bose?Einstein condensates , 2003, cond-mat/0304355.
[11] Kevin Krisciunas,et al. Optical and Near-Infrared Observations of the Highly Reddened, Rapidly Expanding Type Ia Supernova SN 2006X in M100 , 2007, 0708.0140.
[12] M. Phillips,et al. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.
[13] George H. Jacoby,et al. What is better than an 8192x8192 CCD Mosaic imager: two Mosaic wide-field imagers, one for KPNO and one for CTIO , 1998, Astronomical Telescopes and Instrumentation.
[14] M. Phillips,et al. The Absolute Magnitudes of Type IA Supernovae , 1993 .
[15] Adam G. Riess,et al. Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7 , 2004 .
[16] W. M. Wood-Vasey,et al. Measurement of Ωm, ΩΛ from a Blind Analysis of Type Ia Supernovae with CMAGIC: Using Color Information to Verify the Acceleration of the Universe , 2006, astro-ph/0602411.
[17] A. S. Fruchter,et al. Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .
[18] Jihn E. Kim,et al. Completing natural inflation , 2004, hep-ph/0409138.
[19] E. Linder. Exploring the expansion history of the universe. , 2002, Physical review letters.
[20] P. Chandra,et al. Detection of Circumstellar Material in a Normal Type Ia Supernova , 2007, Science.
[21] R. Ellis,et al. A Supernova at z = 0.458 and Implications for Measuring theCosmological Deceleration , 1993, astro-ph/9505023.
[22] Gerson Goldhaber,et al. Multicolor Light Curves of Type Ia Supernovae on the Color-Magnitude Diagram: A Novel Step toward More Precise Distance and Extinction Estimates , 2003, astro-ph/0302341.
[23] Matts Roos,et al. MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .
[24] Paolo Conconi,et al. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .
[25] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[26] A. Aguirre. Intergalactic Dust and Observations of Type Ia Supernovae , 1999, astro-ph/9904319.
[27] R. P. Butler,et al. VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA, , 2009, 0907.1083.
[28] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[29] M. Wagner,et al. AN INTENSIVE HUBBLE SPACE TELESCOPE SURVEY FOR z>1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS , 2009, 0908.3928.
[30] Nicholas B. Suntzeff,et al. The Hubble diagram of the Calan/Tololo type IA supernovae and the value of HO , 1996 .
[31] N. B. Suntzeff,et al. Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.
[32] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[33] Wendy L. Freedman,et al. The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.
[34] H. Epps,et al. ESI, a New Keck Observatory Echellette Spectrograph and Imager , 2002, astro-ph/0204297.
[35] The Charge‐Transfer Efficiency and Calibration of WFPC2 , 2000, astro-ph/0006237.
[36] Arlo U. Landolt,et al. UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .
[37] Limiting the dimming of distant Type Ia supernovae , 2004, astro-ph/0410501.
[38] Safety in Numbers: Gravitational Lensing Degradation of the Luminosity Distance-Redshift Relation , 2004, astro-ph/0412173.
[39] Stefano Casertano,et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.
[40] M. S. Burns,et al. CONSTRAINING DUST AND COLOR VARIATIONS OF HIGH-z SNe USING NICMOS ON THE HUBBLE SPACE TELESCOPE , 2009, 0906.4318.
[41] Mamoru Doi,et al. THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.
[42] J. Wheeler,et al. Type Ia Supernovae: Influence of the Initial Composition on the Nucleosynthesis, Light Curves, and Spectra and Consequences for the Determination of ΩM and Λ , 1997, astro-ph/9709233.
[43] M. Sullivan,et al. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.
[44] 23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at z>0.7 , 2003, astro-ph/0310843.
[45] Nicholas B. Suntzeff,et al. An Atlas of Spectrophotometric Landolt Standard Stars , 2005, astro-ph/0504244.
[46] A. S. Fruchter,et al. Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves , 2001, astro-ph/0104382.
[47] Mamoru Doi,et al. New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope , 2003 .
[48] Ralph C. Bohlin. Photometric Calibration of the ACS CCD Cameras , 2007 .
[49] C. Alard. Image subtraction using a space-varying kernel , 2000 .
[50] N. B. Suntzeff,et al. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.
[51] J. Krist. The Tiny Tim User’s Guide , 2004 .
[52] James W. Beletic,et al. Commissioning of a 4Kx4K CCD mosaic and the new ESO FIERA CCD controller at the SUSI-2 imager of the NTT , 1998, Astronomical Telescopes and Instrumentation.
[53] Edwin A. Valentijn,et al. The Future of Photometric, Spectrophotometric and Polarimetric Standardization , 2007 .
[54] I. Hook,et al. Light curves of five type Ia supernovae at intermediate redshift , 2007, 0711.1375.
[55] Peter B. Stetson,et al. Homogeneous Photometry for Star Clusters and Resolved Galaxies. II. Photometric Standard Stars , 2000 .
[56] A. Goobar,et al. Measuring the properties of extragalactic dust and implications for the hubble diagram , 2002, astro-ph/0201012.
[57] J. Neill,et al. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.
[58] Mark Sullivan,et al. Predicted and Observed Evolution in the Mean Properties of Type Ia Supernovae with Redshift , 2007 .
[59] Klaus W. Hodapp,et al. The Gemini Near‐Infrared Imager (NIRI) , 2003 .
[60] Ernest E. Croner,et al. The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.
[61] P. Nugent,et al. Metallicity Effects in Non-LTE Model Atmospheres of Type Ia Supernovae , 1999, astro-ph/9906016.
[62] Armin Rest,et al. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.
[63] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[64] P. Nugent,et al. K‐Corrections and Extinction Corrections for Type Ia Supernovae , 2002, astro-ph/0205351.
[65] S. E. Persson,et al. A New System of Faint Near-Infrared Standard Stars , 1998 .
[66] M. Sullivan,et al. SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.
[67] Kevin Krisciunas,et al. Hubble Space Telescope Observations of Nine High-Redshift ESSENCE Supernovae,, , 2005, astro-ph/0508681.
[68] Alexander S. Szalay,et al. Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.
[69] R. Ellis,et al. Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z greater than or equal to 0.35 , 1996, astro-ph/9608192.
[70] William Press,et al. A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.
[71] A. Goobar,et al. The colour-lightcurve shape relation of type Ia supernovae and the reddening law , 2007, 0712.1155.
[72] Peter Garnavich,et al. Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.
[73] R. Lupton,et al. A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.
[74] G. Richards,et al. Lensing, reddening and extinction effects of Mg ii absorbers from z= 0.4 to 2 , 2007, 0706.0898.
[75] R. Ellis,et al. Discovery of a supernova explosion at half the age of the Universe , 1997, Nature.
[76] Stefano Casertano,et al. A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.
[77] Harland W. Epps,et al. THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .
[78] M. Sullivan,et al. SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY , 2011, 1104.1443.
[79] Lifan Wang. Dust around Type Ia Supernovae , 2005 .
[80] I. Hook,et al. Subaru FOCAS Spectroscopic Observations of High-Redshift Supernovae , 2009, 0911.1258.
[81] Parametrization of dark-energy properties: a principal-component approach. , 2002, Physical review letters.
[82] D. Hayes,et al. Calibration of Fundamental Stellar Quantities , 1985 .
[83] K. Dawson,et al. A New Determination of the High-Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys , 2007, 0710.3120.
[84] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[85] R. Ellis,et al. Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.
[86] Jay Anderson,et al. An Improved Distortion Solution for the Hubble Space Telescope’s WFPC2 , 2002 .
[87] Stefano Casertano,et al. New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.
[88] M. Sullivan,et al. Photometric calibration of the Supernova Legacy Survey fields , 2006, astro-ph/0610397.
[89] R. Miquel,et al. Optimal Extraction of Cosmological Information from Supernova Data in the Presence of Calibration Uncertainties , 2005, astro-ph/0508252.
[90] Ralph C. Bohlin,et al. Hubble Space Telescope Absolute Spectrophotometry of Vega from the Far-Ultraviolet to the Infrared , 2004 .
[91] et al,et al. UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .
[92] Adam G. Riess,et al. BVRI Light Curves for 22 Type Ia Supernovae , 1998 .
[93] P. Astier,et al. SALT : a spectral adaptive light curve template for type Ia supernovae , 2005 .
[94] P. Greenfield,et al. INSTRUMENT SCIENCE REPORT , 1995 .
[95] N. B. Suntzeff,et al. Supernova Limits on the Cosmic Equation of State , 1998, astro-ph/9806396.
[96] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[97] Spectra of high-redshift type Ia supernovae and a comparison with their low-redshift counterparts , 2005, astro-ph/0509041.
[98] M. Fukugita,et al. The Sloan Digital Sky Survey Photometric System , 1996 .
[99] J. Vanderplas,et al. FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.
[100] William W. Hager,et al. Updating the Inverse of a Matrix , 1989, SIAM Rev..
[101] Adam G. Riess,et al. Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .
[102] Ariel Goobar,et al. Low RV from Circumstellar Dust around Supernovae , 2008, 0809.1094.
[103] M. Sasaki. The magnitude-redshift relation in a perturbed Friedmann universe , 1987 .
[104] S. Okamura,et al. Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.
[105] Armin Rest,et al. IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.
[106] W. M. Wood-Vasey,et al. Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.
[107] Andrew E. Dolphin,et al. A Revised Characterization of the WFPC2 CTE Loss , 2009, 0906.3557.