Towards tensor-based methods for the numerical approximation of the Perron-Frobenius and Koopman operator
暂无分享,去创建一个
[1] U. Schollwoeck. The density-matrix renormalization group , 2004, cond-mat/0409292.
[2] Clarence W. Rowley,et al. A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.
[3] Christof Schütte,et al. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model , 2016, J. Comput. Phys..
[4] I. Mezić,et al. Applied Koopmanism. , 2012, Chaos.
[5] O. Junge,et al. On the Approximation of Complicated Dynamical Behavior , 1999 .
[6] Editors , 1986, Brain Research Bulletin.
[7] Martin J. Mohlenkamp,et al. Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[8] Erik M. Bollt,et al. Applied and Computational Measurable Dynamics , 2013, Mathematical modeling and computation.
[9] Frank Noé,et al. Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. , 2016, The Journal of chemical physics.
[10] Stefan Klus,et al. On the numerical approximation of the Perron-Frobenius and Koopman operator , 2015, 1512.05997.
[11] Frank Noé,et al. Variational Approach to Molecular Kinetics. , 2014, Journal of chemical theory and computation.
[12] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[13] Guanrong Chen,et al. Chaos in Circuits and Systems , 2002 .
[14] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[15] Qiang Du,et al. High order approximation of the Frobenius-Perron operator , 1993 .
[16] Christof Schütte,et al. Metastability and Markov State Models in Molecular Dynamics Modeling, Analysis , 2016 .
[17] CH' , 2018, Dictionary of Upriver Halkomelem.
[18] Wolfgang Hackbusch,et al. Numerical tensor calculus* , 2014, Acta Numerica.
[19] Matthew O. Williams,et al. A kernel-based method for data-driven koopman spectral analysis , 2016 .
[20] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[21] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[22] Gary Froyland,et al. A Computational Method to Extract Macroscopic Variables and Their Dynamics in Multiscale Systems , 2013, SIAM J. Appl. Dyn. Syst..
[23] Matthew O. Williams,et al. A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis , 2014, 1411.2260.
[24] Péter Koltai,et al. Mean Field Approximation in Conformation Dynamics , 2009, Multiscale Model. Simul..
[25] Michael Dellnitz,et al. Dominant Paths Between Almost Invariant Sets of Dynamical Systems , 2004 .
[26] Gary Froyland,et al. A trajectory-free framework for analysing multiscale systems , 2014, 1412.7268.
[27] Gene H. Golub,et al. Matrix computations , 1983 .