Glycoside hydrolase processing of the Pel polysaccharide alters biofilm biomechanics and Pseudomonas aeruginosa virulence

[1]  P. Howell,et al.  The Pel polysaccharide is predominantly composed of a dimeric repeat of α-1,4 linked galactosamine and N-acetylgalactosamine , 2022, Communications Biology.

[2]  V. Gordon,et al.  Contribution of Pseudomonas aeruginosa Exopolysaccharides Pel and Psl to Wound Infections , 2022, Frontiers in Cellular and Infection Microbiology.

[3]  A. Price-Whelan,et al.  Gradients and consequences of heterogeneity in biofilms , 2022, Nature Reviews Microbiology.

[4]  P. Howell,et al.  The Pseudomonas aeruginosa homeostasis enzyme AlgL clears the periplasmic space of accumulated alginate during polymer biosynthesis , 2022, The Journal of biological chemistry.

[5]  Sulin Zhang,et al.  Mechanical forces drive a reorientation cascade leading to biofilm self-patterning , 2021, Nature Communications.

[6]  M. Parsek,et al.  Pseudomonas aeruginosa aggregates in cystic fibrosis sputum produce exopolysaccharides that likely impede current therapies. , 2021, Cell reports.

[7]  A. J. Higgins,et al.  Author Correction: Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis , 2021, Communications biology.

[8]  Z. Ren,et al.  Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. , 2020, Trends in microbiology.

[9]  M. Parsek,et al.  The Versatile Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Promotes Aggregation through Different Extracellular Exopolysaccharide Interactions , 2020, Journal of Bacteriology.

[10]  J. Kitzman,et al.  Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections , 2020, PLoS genetics.

[11]  P. Howell,et al.  Pel Polysaccharide Biosynthesis Requires an Inner Membrane Complex Comprised of PelD, PelE, PelF, and PelG , 2020, Journal of bacteriology.

[12]  K. Sauer,et al.  Untethering and Degradation of the Polysaccharide Matrix Are Essential Steps in the Dispersion Response of Pseudomonas aeruginosa Biofilms , 2019, Journal of bacteriology.

[13]  J. Parkinson,et al.  Discovery and characterization of a Gram-positive Pel polysaccharide biosynthetic gene cluster , 2019, bioRxiv.

[14]  Cedoljub Bundalovic-Torma,et al.  A systematic pipeline for classifying bacterial operons reveals the evolutionary landscape of biofilm machineries , 2019, bioRxiv.

[15]  P. Howell,et al.  Molecular mechanism of Aspergillus fumigatus biofilm disruption by fungal and bacterial glycoside hydrolases , 2019, The Journal of Biological Chemistry.

[16]  H. Stone,et al.  Mechanical instability and interfacial energy drive biofilm morphogenesis , 2019, eLife.

[17]  B. Lemaître,et al.  Microbiota‐Derived Lactate Activates Production of Reactive Oxygen Species by the Intestinal NADPH Oxidase Nox and Shortens Drosophila Lifespan , 2018, Immunity.

[18]  Pradeep K. Singh,et al.  Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa , 2018, Proceedings of the National Academy of Sciences.

[19]  Erin S. Gloag,et al.  Viscoelastic properties of Pseudomonas aeruginosa variant biofilms , 2018, Scientific Reports.

[20]  P. Howell,et al.  PgaB orthologues contain a glycoside hydrolase domain that cleaves deacetylated poly-β(1,6)-N-acetylglucosamine and can disrupt bacterial biofilms , 2018, PLoS pathogens.

[21]  J. Hirabayashi,et al.  Engineering of recombinant Wisteria floribunda agglutinin specifically binding to GalNAc&bgr;1,4GlcNAc (LacdiNAc) , 2017, Glycobiology.

[22]  Ryan J. Morris,et al.  Natural variations in the biofilm-associated protein BslA from the genus Bacillus , 2017, Scientific Reports.

[23]  N. Høiby A short history of microbial biofilms and biofilm infections , 2017, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[24]  P. Howell,et al.  Oligomeric lipoprotein PelC guides Pel polysaccharide export across the outer membrane of Pseudomonas aeruginosa , 2017, Proceedings of the National Academy of Sciences.

[25]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[26]  E. Veal,et al.  Caenorhabditis elegans as a model for understanding ROS function in physiology and disease , 2016, Redox biology.

[27]  P. Howell,et al.  Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms , 2015, Science Advances.

[28]  Raymond Lo,et al.  Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database , 2015, Nucleic Acids Res..

[29]  Boo Shan Tseng,et al.  Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange , 2015, Nature Protocols.

[30]  S. Sørensen,et al.  Facultative Control of Matrix Production Optimizes Competitive Fitness in Pseudomonas aeruginosa PA14 Biofilm Models , 2015, Applied and Environmental Microbiology.

[31]  Boo Shan Tseng,et al.  Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix , 2015, Proceedings of the National Academy of Sciences.

[32]  P. Howell,et al.  Enzymatic modifications of exopolysaccharides enhance bacterial persistence , 2015, Front. Microbiol..

[33]  Paul Stoodley,et al.  Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges , 2015, FEMS microbiology reviews.

[34]  E. Troemel,et al.  Microbial pathogenesis and host defense in the nematode C. elegans. , 2015, Current opinion in microbiology.

[35]  C. Jourlin-Castelli,et al.  Gram-negative bacteria can also form pellicles. , 2014, Environmental microbiology reports.

[36]  P. Thurner,et al.  Microbial tribology and disruption of dental plaque bacterial biofilms , 2013 .

[37]  P. Howell,et al.  PelA Deacetylase Activity Is Required for Pel Polysaccharide Synthesis in Pseudomonas aeruginosa , 2013, Journal of bacteriology.

[38]  Hassan Sakhtah,et al.  Bacterial Community Morphogenesis Is Intimately Linked to the Intracellular Redox State , 2013, Journal of bacteriology.

[39]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[40]  F. Dazzo,et al.  Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces , 2012, Microbial Cell Factories.

[41]  Kazuo Kobayashi,et al.  BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms , 2012, Molecular microbiology.

[42]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[43]  L. Sturiale,et al.  Investigation of bacterial resistance to the immune system response: Cepacian depolymerisation by reactive oxygen species , 2012, Innate immunity.

[44]  Alain Filloux,et al.  The Pseudomonas aeruginosa Reference Strain PA14 Displays Increased Virulence Due to a Mutation in ladS , 2011, PloS one.

[45]  M. Surette,et al.  Drosophila melanogaster as an Animal Model for the Study of Pseudomonas aeruginosa Biofilm Infections In Vivo , 2011, PLoS pathogens.

[46]  G. Wong,et al.  The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa , 2011, PLoS pathogens.

[47]  Alexander K. Epstein,et al.  Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration , 2010, Proceedings of the National Academy of Sciences.

[48]  P. Hallett,et al.  Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25. , 2009, Microbiology.

[49]  J. Koo,et al.  PilF Is an Outer Membrane Lipoprotein Required for Multimerization and Localization of the Pseudomonas aeruginosa Type IV Pilus Secretin , 2008, Journal of bacteriology.

[50]  Carlos C. Goller,et al.  Roles of pgaABCD Genes in Synthesis, Modification, and Export of the Escherichia coli Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine , 2008, Journal of bacteriology.

[51]  S. Govind Innate immunity in Drosophila: Pathogens and pathways , 2008, Insect science.

[52]  M. Bailey,et al.  Microbial Ecology of Aerial Plant Surfaces , 2006 .

[53]  A. Spiers,et al.  Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. , 2006, Environmental microbiology.

[54]  H. Schweizer,et al.  A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. , 2006, Journal of microbiological methods.

[55]  R. Ernst,et al.  Exopolysaccharides from Burkholderia cenocepacia Inhibit Neutrophil Chemotaxis and Scavenge Reactive Oxygen Species* , 2006, Journal of Biological Chemistry.

[56]  T. Beveridge,et al.  High-Resolution Visualization of Pseudomonas aeruginosa PAO1 Biofilms by Freeze-Substitution Transmission Electron Microscopy , 2005, Journal of bacteriology.

[57]  Cornelia I. Bargmann,et al.  Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans , 2005, Nature.

[58]  D. Ohman,et al.  Role of an Alginate Lyase for Alginate Transport in Mucoid Pseudomonas aeruginosa , 2005, Infection and Immunity.

[59]  J. Mekalanos,et al.  ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  A. Filloux,et al.  The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. , 2005, Microbiology.

[61]  Roberto Kolter,et al.  Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms , 2003, Molecular microbiology.

[62]  Matthew R. Parsek,et al.  Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. Rohde,et al.  The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix , 2001, Molecular microbiology.

[64]  F. Ausubel,et al.  Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[65]  H. Schweizer,et al.  A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. , 1998, Gene.

[66]  N. Russell,et al.  Characterisation of alginates from mucoid strains of Pseudomonas aeruginosa. , 1996, Biochemical Society transactions.

[67]  B. Henrissat,et al.  Structures and mechanisms of glycosyl hydrolases. , 1995, Structure.

[68]  G. Bodey,et al.  Infections caused by Pseudomonas aeruginosa. , 1983, Reviews of infectious diseases.

[69]  P. Howell,et al.  PelA and PelB form a modification and secretion complex essential for Pel polysaccharide-dependent biofilm formation in . , 2017 .

[70]  Liping Liu THEORY OF ELASTICITY , 2012 .

[71]  H. Schweizer,et al.  mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa , 2006, Nature Protocols.

[72]  K. Vårum,et al.  Interactions between chitosans and bacterial suspensions: adsorption and flocculation , 2003 .

[73]  R. Dean,et al.  Scavenging by alginate of free radicals released by macrophages. , 1989, Free radical biology & medicine.