RADARSAT-2 and Coastal Applications: Surface Wind, Waterline, and Intertidal Flat Roughness

RADARSAT-2 is a follow-up to RADARSAT-1 and is an all weather Earth observation satellite with fully polarimetric imaging capability. The synthetic aperture radars (SARs) onboard both RADARSATs are C-band imaging radars and they are well suited for Earth's ecosystem monitoring and maritime surveillance, because of the near polar orbit and their unique all weather imaging capability, independent of solar illumination. In this paper, RADARSAT-2 is first introduced and several applications of various modes of SAR data to coastal zone problems are discussed, including the coastal surface wind, waterline mapping, and polarimetric SAR data inversion for topographic and geological parameters of tidal flats. Coastal zones, the important interface between the land and the ocean, where a large proportion of the world's population inhabits, continuously change and evolve. The dynamic interaction of coastal winds, coupled with the coastal waves and currents, continuously erode rocks and land mass, and move and deposit various sediments on a continuous basis, along with the tides. Estimation of wind speeds and directions in coastal areas are empirically formulated and can further be improved with the available fully polarimetric data from RADARSAT-2. The water line mapping critically depends on the SAR frequency, or the wavelength of the SAR data used, and RADARSAT-2 SAR data using C-band should map waterlines more accurately than the longer wavelength L- or P-band SAR systems. The roughness parameters and partial information on the tidal flat compositions can be obtained from fully polarimetric SAR data. Some results obtained from NASA AIRSAR(2000) L-band data and RADARSAT-2(2008) C-band data do not fully agree with field measurements and further investigation is in progress. The inversion of polarimetric SAR data is a very complex problem and critically depends on the SAR signal frequency and model functions. RADARSAT-2 is an imaging radar, which is very flexible and powerful tool for potential coastal zone applications. Key RADARSAT-2 features and potential coastal zone application capabilities are also briefly reviewed.

[1]  B. S. McCartney,et al.  Construction of an inter-tidal digital elevation model by the 'water-line' method , 1995 .

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  Dr Robert Bryant,et al.  The influence of surface and interstitial moisture on the spectral characteristics of intertidal sediments: Implications for airborne image acquisition and processing , 2000 .

[4]  Alan A. Thompson,et al.  RADARSAT-2 SAR modes development and utilization , 2004 .

[5]  Jochen Horstmann,et al.  Investigation of SAR wind field retrieval with respect to hurricane winds , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[6]  H. Liu,et al.  Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods , 2004 .

[7]  Ola M. Johannessen,et al.  SAR-retrieved wind in polar regions-comparison with in situ data and atmospheric model output , 2002, IEEE Trans. Geosci. Remote. Sens..

[8]  T. I. Lukowski,et al.  RADARSAT-1 image quality and calibration — a continuing success , 2001 .

[9]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  David C. Mason,et al.  Accurate and efficient determination of the shoreline in ERS-1 SAR images , 1996, IEEE Trans. Geosci. Remote. Sens..

[11]  Jong-Sen Lee,et al.  Surface roughness and slope measurements using polarimetric SAR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[12]  P. W. Vachon,et al.  Validation of wind vector retrieval from ERS-1 SAR images over the ocean , 1996 .

[13]  Andreas Niedermeier,et al.  Coastlines in SAR images using edge detection by wavelet methods , 2000 .

[14]  Peter Cornillon,et al.  Warm core ring velocities inferred from NSCAT , 2001 .

[15]  S. T. Acton,et al.  Automated delineation of coastline from polarimetric SAR imagery , 2004 .

[16]  Peter M. J. Herman,et al.  Characterisation of surface roughness and sediment texture of intertidal flats using ERS SAR imagery , 2005 .

[17]  Adrian K. Fung,et al.  Backscattering from a randomly rough dielectric surface , 1992, IEEE Trans. Geosci. Remote. Sens..

[18]  A. Jones,et al.  The Use of Satellite Imagery to Determine the Distribution of Intertidal Surface Sediments of The Wash, England , 1993 .

[19]  Wooil M. Moon,et al.  Estimation of sea surface wind vector using RADARSAT data , 2002 .

[20]  Martin Gade,et al.  Classification of sediments on exposed tidal flats in the German Bight using multi-frequency radar data , 2008 .

[21]  Duk-jin Kim,et al.  Estimation of Surface Roughness Parameter in Intertidal Mudflat Using Airborne Polarimetric SAR Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[22]  A. Luscombe,et al.  RADARSAT-2 SAR image quality and calibration operations , 2004 .

[23]  J. A. Smith,et al.  A Sensitivity Analysis of the Waterline Method of Constructing a Digital Elevation Model for Intertidal Areas in ERS SAR scene of Eastern England , 2001 .

[24]  S. Lehner,et al.  Topography and morphodynamics in the German Bight using SAR and optical remote sensing data , 2005 .

[25]  Jong-Sen Lee,et al.  Coastline Detection And Tracing In SAr Images , 1990 .

[26]  S. Lehner,et al.  Ocean winds from RADARSAT-1 ScanSAR , 2002 .

[27]  Duk-jin Kim,et al.  Dependence of Waterline Mapping on Radar Frequency Used for SAR Images in Intertidal Areas , 2007, IEEE Geoscience and Remote Sensing Letters.

[28]  P. Vachon,et al.  Wind Retrieval from RADARSAT SAR Images: Selection of a Suitable C-Band HH Polarization Wind Retrieval Model , 2000 .

[29]  W. Alpers,et al.  An improved composite surface model for the radar backscattering cross section of the ocean surface 1. Theory of the model and optimization/validation by scatterometer data , 1997 .

[30]  Jochen Horstmann,et al.  Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization , 2000, IEEE Trans. Geosci. Remote. Sens..

[31]  G. Valenzuela Theories for the interaction of electromagnetic and oceanic waves — A review , 1978 .

[32]  J. J. van der Sanden,et al.  Anticipated applications potential of RADARSAT-2 data , 2004 .

[33]  J. Beck,et al.  An introduction to the RADARSAT-2 mission , 2004 .

[34]  Peter Cornillon,et al.  Wind and bathymetric forcing of the annual sea surface temperature signal in the East (Japan) Sea , 2005 .

[35]  Alexis Mouche,et al.  Dual-polarization measurements at C-band over the ocean: results from airborne radar observations and comparison with ENVISAT ASAR data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Xavier Descombes,et al.  Coastline detection by a Markovian segmentation on SAR images , 1996, Signal Process..

[37]  Joong-Sun Won,et al.  A critical grain size for Landsat ETM+ investigations into intertidal sediments: a case study of the Gomso tidal flats, Korea , 2004 .

[38]  J. Wright A new model for sea clutter , 1968 .

[39]  W. Marsden I and J , 2012 .

[40]  T. Gerling Structure of the surface wind field from the Seasat SAR , 1986 .

[41]  H. Hersbach,et al.  An improved C-band scatterometer ocean geophysical model function: CMOD5 , 2007 .

[42]  Donald R. Thompson,et al.  The influence of the marine atmospheric boundary layer on ERS 1 synthetic aperture radar imagery of the Gulf Stream , 1997 .

[43]  David L. T. Anderson,et al.  Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4 , 1997 .

[44]  Andreas Niedermeier,et al.  Detection of coastlines in SAR images using wavelet methods , 2000, IEEE Trans. Geosci. Remote. Sens..

[45]  D. Lyzenga,et al.  Full‐spectrum modeling of synthetic aperture radar internal wave signatures , 1988 .

[46]  Robert A. Shuchman,et al.  Wind vector retrieval using ERS-1 synthetic aperture radar imagery , 1996, IEEE Trans. Geosci. Remote. Sens..