Mixed-State Long-Range Order and Criticality from Measurement and Feedback

We propose a general framework for using local measurements, local unitaries, and non-local classical communication to construct quantum channels which can efficiently prepare mixed states with long-range quantum order or quantum criticality. As an illustration, symmetry-protected topological (SPT) phases can be universally converted into mixed-states with long-range entanglement, which can undergo phase transitions with quantum critical correlations of local operators and a logarithmic scaling of the entanglement negativity, despite coexisting with volume-law entropy. Within the same framework, we present two applications using fermion occupation number measurement to convert (i) spinful free fermions in one dimension into a quantum-critical mixed state with enhanced algebraic correlations between spins and (ii) Chern insulators into a mixed state with critical quantum correlations in the bulk. The latter is an example where mixed-state quantum criticality can emerge from a gapped state of matter in constant depth using local quantum operations and non-local classical communication.

[1]  Yijian Zou,et al.  Channeling quantum criticality , 2023, 2301.07141.

[2]  A. Vishwanath,et al.  Diagnostics of mixed-state topological order and breakdown of quantum memory , 2023, 2301.05689.

[3]  A. Vishwanath,et al.  Mixed-state topological order and the errorfield double formulation of decoherence-induced transitions , 2023, 2301.05687.

[4]  Chao-Ming Jian,et al.  Quantum criticality under decoherence or weak measurement , 2023, 2301.05238.

[5]  Yang Qi,et al.  Strange Correlation Function for Average Symmetry-Protected Topological Phases , 2022, 2210.17485.

[6]  Cenke Xu,et al.  Symmetry protected topological phases under decoherence , 2022, 2210.16323.

[7]  A. Vishwanath,et al.  A hierarchy of topological order from finite-depth unitaries, measurement and feedforward , 2022, 2209.06202.

[8]  A. Vishwanath,et al.  The Shortest Route to Non-Abelian Topological Order on a Quantum Processor , 2022, 2209.03964.

[9]  M. Fisher,et al.  Decoding Measurement-Prepared Quantum Phases and Transitions: from Ising model to gauge theory, and beyond , 2022, 2208.11699.

[10]  S. Trebst,et al.  Nishimori's Cat: Stable Long-Range Entanglement from Finite-Depth Unitaries and Weak Measurements. , 2022, Physical review letters.

[11]  Isaac H. Kim,et al.  Measurement as a Shortcut to Long-Range Entangled Quantum Matter , 2022, PRX Quantum.

[12]  Chao Yin,et al.  Locality and error correction in quantum dynamics with measurement , 2022, 2206.09929.

[13]  Isaac H. Kim,et al.  Adaptive constant-depth circuits for manipulating non-abelian anyons , 2022, 2205.01933.

[14]  S. Vijay,et al.  Characterizing long-range entanglement in a mixed state through an emergent order on the entangling surface , 2022, Physical Review Research.

[15]  A. Vishwanath,et al.  Long-Range Entanglement from Measuring Symmetry-Protected Topological Phases , 2021, Physical Review X.

[16]  J. Cirac,et al.  Quantum Circuits Assisted by Local Operations and Classical Communication: Transformations and Phases of Matter , 2021, Physical Review Letters.

[17]  C. Gross,et al.  Quantum gas microscopy for single atom and spin detection , 2020, Nature Physics.

[18]  R. Verresen,et al.  Gauging the Kitaev chain , 2020, 2010.00607.

[19]  T. Grover,et al.  Detecting Topological Order at Finite Temperature Using Entanglement Negativity. , 2019, Physical review letters.

[20]  Willem B. Drees,et al.  Creation , 2003, Perfect Being Theology.

[21]  A. Vishwanath,et al.  Full commuting projector Hamiltonians of interacting symmetry-protected topological phases of fermions , 2018, Physical Review B.

[22]  Thomas Scaffidi,et al.  Gapless Symmetry-Protected Topological Order , 2017, 1705.01557.

[23]  Yi Zhou,et al.  Quantum spin liquid states , 2016, 1607.03228.

[24]  L. Balents,et al.  Quantum spin liquids: a review , 2016, Reports on progress in physics. Physical Society.

[25]  T. M. Stace,et al.  Foliated Quantum Error-Correcting Codes. , 2016, Physical review letters.

[26]  S. Sondhi,et al.  Phase structure of one-dimensional interacting Floquet systems. I. Abelian symmetry-protected topological phases , 2016 .

[27]  Vlatko Vedral,et al.  Entanglement Rényi α entropy , 2015, 1504.03909.

[28]  S. Simon,et al.  Hidden order and flux attachment in symmetry-protected topological phases: A Laughlin-like approach , 2014, 1410.0318.

[29]  Ashvin Vishwanath,et al.  Symmetry-protected topological phases from decorated domain walls , 2013, Nature Communications.

[30]  Xiao-Gang Wen,et al.  Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory , 2012, 1201.2648.

[31]  J. Cardy,et al.  Entanglement negativity in extended systems: a field theoretical approach , 2012, 1210.5359.

[32]  Frank Pollmann,et al.  Detection of symmetry-protected topological phases in one dimension , 2012, 1204.0704.

[33]  Matthew B Hastings,et al.  Topological order at nonzero temperature. , 2011, Physical review letters.

[34]  Xiao-Gang Wen,et al.  Complete classification of one-dimensional gapped quantum phases in interacting spin systems , 2011, 1103.3323.

[35]  Beni Yoshida,et al.  Feasibility of self-correcting quantum memory and thermal stability of topological order , 2011, 1103.1885.

[36]  Xiao-Gang Wen,et al.  Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.

[37]  Jason Alicea,et al.  Majorana fermions in a tunable semiconductor device , 2009, 0912.2115.

[38]  Stephen D Bartlett,et al.  Identifying phases of quantum many-body systems that are universal for quantum computation. , 2008, Physical review letters.

[39]  B. Terhal,et al.  A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes , 2008, 0810.1983.

[40]  F. Verstraete,et al.  Lieb-Robinson bounds and the generation of correlations and topological quantum order. , 2006, Physical review letters.

[41]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[42]  Matthew P. A. Fisher,et al.  Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons , 2005 .

[43]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[44]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[45]  M. Plenio,et al.  Three-spin interactions in optical lattices and criticality in cluster Hamiltonians. , 2004, Physical review letters.

[46]  Z. Nussinov,et al.  Geometry and the hidden order of Luttinger liquids: The universality of squeezed space , 2003, cond-mat/0312052.

[47]  Youjin Deng,et al.  Cluster Monte Carlo simulation of the transverse Ising model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[49]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[50]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[51]  Guifre Vidal,et al.  Entanglement monotones , 1998, quant-ph/9807077.

[52]  J. Eisert,et al.  A comparison of entanglement measures , 1998, quant-ph/9807034.

[53]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[54]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[55]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[56]  F. Wilczek,et al.  Geometric and renormalized entropy in conformal field theory , 1994, hep-th/9403108.

[57]  Masaki Oshikawa,et al.  Hidden Z2*Z2 symmetry in quantum spin chains with arbitrary integer spin , 1992 .

[58]  Hal Tasaki,et al.  Hidden symmetry breaking and the Haldane phase inS=1 quantum spin chains , 1992 .

[59]  Kennedy,et al.  Hidden Z2 x Z2 symmetry breaking in Haldane-gap antiferromagnets. , 1992, Physical review. B, Condensed matter.

[60]  M. Nijs,et al.  Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. , 1989, Physical review. B, Condensed matter.

[61]  Shastry,et al.  Exact solution of an S=1/2 Heisenberg antiferromagnetic chain with long-ranged interactions. , 1988, Physical review letters.

[62]  Haldane,et al.  Exact Jastrow-Gutzwiller resonating-valence-bond ground state of the spin-(1/2 antiferromagnetic Heisenberg chain with 1/r2 exchange. , 1988, Physical review letters.

[63]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[64]  F. Haldane Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State , 1983 .

[65]  M. Gutzwiller Effect of Correlation on the Ferromagnetism of Transition Metals , 1963 .