Breaking up with a kinky SUMO

Ubiquitin-like protein (Ubl)-specific proteases catalyze Ubl precursor processing and deconjugation. Two recent structural studies of SUMO-specific protease (SENP)–substrate complexes provide new insight into hydrolysis of the peptide bond at the C terminus of SUMO. A kinked, cis configuration for the scissile bond is crucial for proteolysis.

[1]  S. Au,et al.  Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. , 2005, The Biochemical journal.

[2]  M. Dasso,et al.  Association of the Human SUMO-1 Protease SENP2 with the Nuclear Pore* , 2002, The Journal of Biological Chemistry.

[3]  Amalio Telenti,et al.  Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing , 1998, Nature Structural Biology.

[4]  Ho Yin Chan,et al.  Crystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease. , 2006, The Biochemical journal.

[5]  M. Hochstrasser,et al.  A new protease required for cell-cycle progression in yeast , 1999, Nature.

[6]  Muyang Li,et al.  Crystal Structure of a UBP-Family Deubiquitinating Enzyme in Isolation and in Complex with Ubiquitin Aldehyde , 2002, Cell.

[7]  M. Hochstrasser,et al.  The Ulp1 SUMO isopeptidase , 2003, The Journal of cell biology.

[8]  F. Melchior,et al.  SUMO: regulating the regulator , 2006, Cell Division.

[9]  K. Wilkinson Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. , 2000, Seminars in cell & developmental biology.

[10]  C. Hill,et al.  Structural basis for the specificity of ubiquitin C‐terminal hydrolases , 1999, The EMBO journal.

[11]  David Reverter,et al.  A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. , 2004, Structure.

[12]  H. Saitoh,et al.  Enzymes of the SUMO Modification Pathway Localize to Filaments of the Nuclear Pore Complex , 2002, Molecular and Cellular Biology.

[13]  Min Wang,et al.  The Small Ubiquitin-like Modifier-1 (SUMO-1) Consensus Sequence Mediates Ubc9 Binding and Is Essential for SUMO-1 Modification* , 2001, The Journal of Biological Chemistry.

[14]  James H Naismith,et al.  The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. , 2006, The Biochemical journal.

[15]  James H Naismith,et al.  SUMO protease SENP1 induces isomerization of the scissile peptide bond , 2006, Nature Structural &Molecular Biology.

[16]  C. Pickart,et al.  Ubiquitin: structures, functions, mechanisms. , 2004, Biochimica et biophysica acta.

[17]  C. Lima,et al.  Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. , 2000, Molecular cell.

[18]  Erica S. Johnson,et al.  Protein modification by SUMO. , 2004, Annual review of biochemistry.

[19]  David Reverter,et al.  Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates , 2006, Nature Structural &Molecular Biology.

[20]  A. Amerik,et al.  Mechanism and function of deubiquitinating enzymes. , 2004, Biochimica et biophysica acta.