Minimal-energy clusters of hard spheres

What is the tightest packing ofN equal nonoverlapping spheres, in the sense of having minimal energy, i.e., smallest second moment about the centroid? The putatively optimal arrangements are described forN≤32. A number of new and interesting polyhedra arise.

[1]  Thomas F. Coleman,et al.  Isotropic effective energy simulated annealing searches for low energy molecular cluster states , 1993, Comput. Optim. Appl..

[2]  Kenneth Falconer,et al.  Unsolved Problems In Geometry , 1991 .

[3]  Michel Mollard,et al.  Some progress in the packing of equal circles in a square , 1990, Discret. Math..

[4]  N. J. A. Sloane,et al.  Expressing (a2 + b2 + c2 + d2)3 as a Sum of 23 Sixth Powers , 1994, J. Comb. Theory, Ser. A.

[5]  C. Campopiano,et al.  A Coherent Digital Amplitude and Phase Modulation Scheme , 1962 .

[6]  L. Wille Minimum-energy configurations of atomic clusters: new results obtained by simulated annealing , 1987 .

[7]  Richard D. Gitlin,et al.  Optimization of Two-Dimensional Signal Constellations in the Presence of Gaussian Noise , 1974, IEEE Trans. Commun..

[8]  T. Hales The status of the kepler conjecture , 1994 .

[9]  W. Wefelmeier,et al.  Ein geometrisches Modell des Atomkerns , 1937 .

[10]  R. H. Hardin,et al.  A new approach to the construction of optimal designs , 1993 .

[11]  N. J. A. Sloane,et al.  New spherical 4-designs , 1992, Discret. Math..

[12]  H. Melissen,et al.  Densest packings of congruent circles in an equilateral triangle , 1993 .

[13]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[14]  N. J. A. Sloane,et al.  Penny-packing and two-dimensional codes , 1990, Discret. Comput. Geom..

[15]  Thomas F. Coleman,et al.  A parallel build-up algorithm for global energy minimizations of molecular clusters using effective energy simulated annealing , 1993, J. Glob. Optim..

[16]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[17]  J. Farges,et al.  Noncrystalline structure of argon clusters. I. Polyicosahedral structure of ArN clusters, 20 , 1983 .

[18]  Peter Gritzmann,et al.  Finite Packing and Covering , 1993 .

[19]  R. Baker Kearfott,et al.  Algorithm 681: INTBIS, a portable interval Newton/bisection package , 1990, TOMS.

[20]  M. Hoare,et al.  Physical cluster mechanics: Statistical thermodynamics and nucleation theory for monatomic systems , 1975 .

[21]  Douglas J. Muder,et al.  A new bound on the local density of sphere packings , 1993, Discret. Comput. Geom..

[22]  Timothy Y. Chow Penny-packings with minimal second moments , 1995, Comb..

[23]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[24]  N. Johnson Convex Polyhedra with Regular Faces , 1966, Canadian Journal of Mathematics.

[25]  David Shalloway,et al.  Packet annealing: a deterministic method for global minimization , 1992 .

[26]  N. J. A. Sloane,et al.  Theta series and magic numbers for close‐packed spherical clusters , 1985 .

[27]  M. Hoare,et al.  Statistical mechanics and morphology of very small atomic clusters , 1976 .

[28]  R. Peikert,et al.  Packing circles in a square: A review and new results , 1992 .

[29]  脇 克志 An Introduction to MAGMA , 1995 .

[30]  J. Farges,et al.  Comparison between icosahedral, decahedral and crystalline Lennard-Jones models containing 500 to 6000 atoms , 1989 .

[31]  M. R. Hoare,et al.  Morphology and statistical statics of simple microclusters , 1983 .

[32]  M. Hoare,et al.  Physical cluster mechanics: Statics and energy surfaces for monatomic systems , 1971 .

[33]  W. Hsiang ON THE SPHERE PACKING PROBLEM AND THE PROOF OF KEPLER'S CONJECTURE , 1993 .

[34]  N. J. A. Sloane,et al.  New trellis codes based on lattices and cosets , 1987, IEEE Trans. Inf. Theory.