Physical and mechanical metallurgy of Ni3Al and its alloys

AbstractThe physical and mechanical metallurgy of Ni3Al and its alloys is reviewed. Emphasis is on developments within the past five years, a period of extremely rapid growth in research on the behaviour of this unusually interesting intermetallic compound. This review is particularly concerned with solute effects on properties such as diffusion rates, ductility, fatigue resistance, and environmental stability, subjects that only recently have received much attention. Novel processing techniques, including rapid solidification and powder processing, are shown to have played a key role in providing Ni3Al-base alloys with improved properties. An assessment of needed areas of research to hasten commercial applications of Ni3Al alloys concludes the review.

[1]  A. DasGupta,et al.  Positron annihilation study of boron-doped Ni3Al☆ , 1985 .

[2]  C. L. White,et al.  Design of Ductile Polycrystalline Ni 3 Al Alloys , 1984 .

[3]  C. Liu,et al.  Load relaxation studies of grain boundary effects in two Ni3Al alloys at elevated temperatures , 1987 .

[4]  Tomoo Suzuki,et al.  The effect of nonstoichiometry on the positive temperature dependence of strength of Ni3AI and Ni3Ga , 1981 .

[5]  C. Laird,et al.  The dislocation structures of Ni3(Al, Nb) single crystals fatigued at ambient and elevated temperatures , 1987 .

[6]  T. Masumoto,et al.  Grain boundary fracture of L12 type intermetallic compound Ni3Ai , 1985 .

[7]  Shyh-Chin Huang,et al.  Carbon effects in rapidly solidified Ni_3Al , 1986 .

[8]  D. Pope,et al.  The tension/compression flow stress asymmetry in Ni3(Al,Nb) Single crystals , 1982 .

[9]  T. Takasugi,et al.  Electronic and structural studies of grain boundary strength and fracture in Ll2 ordered alloys—II. On the effect of third elements in Ni3Al alloy , 1985 .

[10]  O. Izumi,et al.  Improvement in Room Temperature Ductility of the L1 2 Type Intermetallic Compound Ni 3 Al by Boron Addition , 1979 .

[11]  D. B. Snow,et al.  Creep Deformation of Ta Modified Gamma Prime Single Crystals , 1986 .

[12]  C. T. Liu,et al.  High-temperature ordered intermetallic alloys , 1985 .

[13]  J. Clark,et al.  A diffraction study of the substructure in cold‐worked Ni3Al , 1977 .

[14]  C. Liu,et al.  Effect of grain size on yield strength of Ni_3Al and other alloys , 1988 .

[15]  C. Liu,et al.  Microstructures and mechanical properties of Ni3Al alloyed with iron additions , 1987, Metallurgical and Materials Transactions A.

[16]  K. Vedula,et al.  The role of boron in ductilizing Ni3Al , 1987 .

[17]  C. Liu,et al.  Effects of grain size and test temperature on ductility and fracture behavior of A B-doped Ni3Al alloy , 1988 .

[18]  G. Was,et al.  Grain boundary chemistry and intergranular fracture , 1989 .

[19]  T. Watanabe,et al.  An approach to grain boundary design for strong and ductile polycrystals. , 1984 .

[20]  N. Stoloff,et al.  Hydrogen embrittlement of Ni3Al+B , 1985 .

[21]  N. Stoloff,et al.  Fatigue of Intermetallic Compounds , 1986 .

[22]  C. Laird,et al.  cyclic deformation of Ni3(Al,Nb) single crystals at ambient and elevated temperatures , 1987 .

[23]  V. Sikka NICKEL ALUM1NIDES - NEW ADVANCED ALLOYS , 1989 .

[24]  David P. Pope,et al.  A theory of the anomalous yield behavior in L12 ordered alloys , 1984 .

[25]  Eal H. Lee,et al.  An environmental effect as the major cause for room-temperature embrittlement in FeAl☆ , 1989 .

[26]  Shyh-Chin Huang,et al.  Improved Strength and Ductility of Ni3Al by Boron Modification and Rapid Solidification , 1984 .

[27]  Tomoo Suzuki,et al.  Mechanical Properties of Ni3Al with Ternary Addition of B-subgroup Elements , 1986 .

[28]  O. Izumi,et al.  Application of the selected area channeling pattern method to the study of intergranular fracture in Ni3Al , 1986 .

[29]  J. Silcock,et al.  Strengthening Mechanisms in γ′ Precipitating Alloys , 1970 .

[30]  R. Rawlings,et al.  Steady-state creep of an alloy based on the intermetallic compound Ni3Al(γ′) , 1977 .

[31]  G. F. Hancock Diffusion of nickel in alloys based on the intermetallic compound Ni3Al(γ , 1971 .

[32]  M. Miller,et al.  Atom probe analysis of grain boundaries in rapidly-solidified Ni3Al☆ , 1987 .

[33]  D. Duquette,et al.  Effects of temperature and environment on the tensile and fatigue crack growth behavior of a Ni3AI-base alloy , 1990 .

[34]  D. Pope,et al.  The asymmetry of cyclic hardening in Ni3(Al,Nb) single crystals , 1985 .

[35]  R. Doherty Discussion of “mechanism of steady-state grain growth in aluminum” , 1975 .

[36]  R. Cahn,et al.  The order-disorder transformation in Ni3Al and Ni3AlFe alloys—I. Determination of the transition temperatures and their relation to ductility , 1987 .

[37]  W. Porter,et al.  Plastic flow and microstructure of cast nickel aluminides at 1273 K , 1987 .

[38]  J. Polák On the role of point defects in fatigue crack initiation , 1987 .

[39]  P. Veyssiére,et al.  Dependence of the antiphase boundary energy upon orientation in the L12 structure , 1987 .

[40]  D. Farkas,et al.  Geometrical models for symmetrical tilt boundaries in L12 ordered compounds , 1987 .

[41]  S.-C. Huang,et al.  Boron extended solubility and strengthening potency in rapidly solidified Ni3Al , 1984 .

[42]  D. Potter,et al.  Recovery Processes and Ordering in Ni3Al , 1967 .

[43]  P. Veyssiére Weak-beam study of dislocations moving on {100} planes at 800°C in Ni3Al , 1985 .

[44]  F. J. Pinski,et al.  Ab initio theory of the ground state properties of ordered and disordered alloys and the theory of ordering processes in alloys , 1986 .

[45]  A. Voter,et al.  Computer simulation of grain boundaries in Ni3Al: The effect of grain boundary composition , 1986 .

[46]  H. Bakker 4 – Tracer Diffusion in Concentrated Alloys , 1984 .

[47]  M. Kim,et al.  Effect of Grain Size on Strength, Ductility and Fracture in Recrystallized Ni3Al Doped with Boron , 1988 .

[48]  K. Aoki,et al.  Flow and fracture behaviour of Ni3(Al·Ti) single crystals tested in tension , 1979 .

[49]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[50]  C. Liu,et al.  Effects of testing environment on the elevated temperature ductility of boron-doped Ni3Al , 1986 .

[51]  D. Pope,et al.  The temperature dependence of the long‐range order parameter of Ni3Al , 1977 .

[52]  A. E. Vidoz,et al.  On work-hardening in ordered alloys , 1962 .

[53]  J. E. Doherty,et al.  Influence of differential dislocation mobility on the fatigue behavior of alloyed , 1975 .

[54]  C. Liu,et al.  Creep behavior of a polycrystalline nickel aluminide: Ni-23.5 at.% A1-0.5 at.% Hf-0.2 at.% B , 1986 .

[55]  T. Takasugi,et al.  Hydrogen embrittlement of pseudobinary l12-type Ni3(Alo.4Mno.6) intermetallic compound , 1988 .

[56]  S. Takeuchi,et al.  The Nature of Stacking Faults and Partial Dislocations in Deformed Ni3Ga Single Crystal , 1973 .

[57]  C. L. White,et al.  Effect of boron on grain-boundaries in Ni3Al† , 1985 .

[58]  P. Veyssiére,et al.  Dislocation line stability in Ni3AI , 1986 .

[59]  J. Hosson,et al.  Atomic structure of stoichiometric and non-stoichiometric grain boundaries in A3B compounds with L12 structure , 1988 .

[60]  O. Izumi,et al.  Defect Structures and Long‐Range‐Order Parameters in Off‐Stoichiometric Ni3Al , 1975 .

[61]  J. Weertman,et al.  Theory of Steady‐State Creep Based on Dislocation Climb , 1955 .

[62]  A. Taub,et al.  Ductility in boron-doped, nickel-base L12 alloys processed by rapid solidification , 1986 .

[63]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[64]  E. Schulson,et al.  On grain boundaries in nickel-rich Ni3Al , 1989 .

[65]  W. T. Loomis,et al.  The influence of molybdenum on the γ/’phase in experimental nickel-base superalloys , 1972 .

[66]  T. Takasugi,et al.  Improved ductility and strength of Ni3Al compound by beryllium addition , 1986 .

[67]  Shyh-Chin Huang,et al.  L12-type Ni-Al-Cr alloys processed by rapid solidification , 1986 .

[68]  A. W. Thompson,et al.  Effect of hydrogen on behavior of materials , 1976 .

[69]  V. Vítek,et al.  Dissociation and core structure of 〈110〉 screw dislocations in L12 ordered alloys I. Core structure in an unstressed crystal , 1982 .

[70]  H. Tsuruoka,et al.  Isothermal oxidation behavior of Ni3Al-0.1B base alloys containing Ti, Zr, or Hf additions , 1986 .

[71]  A. Inoue,et al.  Microstructure and mechanical properties of rapidly quenched L11 alloys in Ni-Al-X systems , 1983 .

[72]  J. Hack,et al.  A model for the fracture behavior of polycrystalline Ni3Al , 1986 .

[73]  J. A. López,et al.  The effects of non-stoichiometry and titanium additions on the mechanical behaviour of Ni3Al (γ′) , 1970 .

[74]  J. Michael,et al.  The effect of boron on the chemistry of grain boundaries in stoichiometric Ni3Al , 1988 .

[75]  R. G. Davies,et al.  The temperature dependence of the flow stress of gamma prime phases having the Ll2 structure , 1970 .

[76]  Tomoo Suzuki,et al.  Mechanical Properties of Ni3Al with Ternary Addition of Transition Metal Elements , 1986 .

[77]  L. Martínez,et al.  Stochastic processes in creep cavitation , 1987 .

[78]  G. M. Bond,et al.  Effect of boron on the mechanism of strain transfer across grain boundaries in Ni_3Al , 1987 .

[79]  C. L. White,et al.  The effect of thermal history on intergranular boron segregation and fracture morphology of substoichiometric Ni 3Al , 1986 .

[80]  Tomoo Suzuki,et al.  Alloying behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge , 1984 .

[81]  李幼升,et al.  Ph , 1989 .

[82]  C. L. White,et al.  Surface and grain boundary segregation in relation to intergranular fracture: Boron and sulfur in Ni3Al , 1984 .

[83]  E. Schulson,et al.  The effect of boron on the lattice properties of Ni3Al , 1988 .

[84]  R. Graves,et al.  Physical Properties of Ni 3 Al Containing 24 and 25 Atomic Percent Aluminum , 1984 .

[85]  J. P. Neumann,et al.  Determination of the order in the intermetallic phase Ni3Al as a function of temperature , 1970 .

[86]  T. Takasugi,et al.  Factors affecting the intergranular hydrogen embrittlement of Co3Ti , 1986 .

[87]  J. D. Kuenzly,et al.  The oxidation mechanism of Ni3Al containing yttrium , 1974 .

[88]  O. Izumi,et al.  Deformation behaviour of recrystallized Ni3Al , 1986 .

[89]  N. Stoloff,et al.  Cyclic Hardening and Crack Initiation in Intermetallic Compounds , 1989 .

[90]  M. Davidovitz,et al.  Failure modes and fracture mechanisms in flexure of Kevlar-epoxy composites , 1984 .

[91]  S. W. Hopkins,et al.  The effect of strain rate on the flow stress and dislocation behavior of a precipitation-hardened nickel-base alloy , 1971 .

[92]  P. Hirsch,et al.  Anti-phase domain boundary tubes in Ni3Al , 1982, Nature.

[93]  A. Taub,et al.  Composition dependence of ductility in boron-doped, nickel-base L12 alloys , 1987 .

[94]  R. G. Davies,et al.  The mechanical properties of ordered alloys , 1968 .

[95]  G. Ackland,et al.  HIGH-TEMPERATURE ORDERED INTERMETALLIC ALLOYS III , 1989 .

[96]  Murray S. Daw,et al.  Atomic-Scale Simulation in Materials Science , 1988 .

[97]  E. Schulson,et al.  Metallographic observations of dynamic recrystallization in Ni3Al , 1984 .

[98]  T. Takasugi,et al.  Mechanical properties of Ni3Al containing C, B and Be , 1988 .

[99]  P. Veyssiére,et al.  On the presence of super lattice intrinsic stacking faults in plastically deformed Ni3Al , 1985 .

[100]  D. Pope,et al.  The orientation and temperature dependence of the yield stress of Ni3 (Al, Nb) single crystals , 1979 .

[101]  C. L. White,et al.  Dynamic embrittlement of boron-doped Ni3Al alloys at 600°C☆ , 1987 .

[102]  S. Takeuchi,et al.  Temperature and orientation dependence of the yield stress in Ni{in3}Ga single crystals , 1973 .

[103]  T. P. Weihs,et al.  The strength, hardness and ductility of Ni3Al with and without boron , 1987 .