Photovoltaic efficiency enhancement for crystalline silicon solar cells via a Bi-functional layer based on europium complex@nanozeolite@SiO2

[1]  C. P. Joshi,et al.  NIR emitting phosphors based on PbMoO 4 for modification of solar spectrum , 2018 .

[2]  Yi Yu,et al.  Integrating Down-Shifting and Down-Conversion into Metal–Organic Frameworks to Enhance the Spectral Conversion for Solar Cells , 2018 .

[3]  P. Li,et al.  Thermally Stable White Emitting Eu3+ Complex@Nanozeolite@Luminescent Glass Composite with High CRI for Organic-Resin-Free Warm White LEDs. , 2017, ACS applied materials & interfaces.

[4]  Baoping Lin,et al.  Photoelectric efficiency enhancement of a polycrystalline silicon solar cell coated with an EVA film containing Eu3+ complex by addition of modified SiO2 , 2016 .

[5]  W. Ho,et al.  Performance enhancement of planar silicon solar cells through utilization of two luminescent down-shifting Eu-doped phosphor species , 2016 .

[6]  A. Slaoui,et al.  Enhancement of silicon solar cells by downshifting with Eu and Tb coordination complexes , 2016 .

[7]  Xianju Zhou,et al.  An Efficient Dual‐Mode Solar Spectral Modification for c‐Si Solar Cells in Tm3+/Yb3+ Codoped Tellurite Glasses , 2016 .

[8]  R. Xie,et al.  Europium(ii)-activated oxonitridosilicate yellow phosphor with excellent quantum efficiency and thermal stability - a robust spectral conversion material for highly efficient and reliable white LEDs. , 2015, Physical chemistry chemical physics : PCCP.

[9]  R. Guerrero-Lemus,et al.  A new cost-effective polymeric film containing an Eu(III) complex acting as UV protector and down-converter for Si-based solar cells and modules , 2015 .

[10]  Vânia T. Freitas,et al.  Eu³⁺-based bridged silsesquioxanes for transparent luminescent solar concentrators. , 2015, ACS applied materials & interfaces.

[11]  W. Hung,et al.  Efficiency enhancement of silicon solar cells through a downshifting and antireflective oxysulfide phosphor layer , 2015 .

[12]  Takayuki Nakanishi,et al.  Photo- and thermo-stable luminescent beads composed of Eu(III) complexes and PMMA for enhancement of silicon solar cell efficiency , 2014 .

[13]  G. Calzaferri,et al.  Luminescence enhancement after adding stoppers to europium(III) nanozeolite L. , 2014, Angewandte Chemie.

[14]  Jun Lin,et al.  Rare earth ions doped phosphors for improving efficiencies of solar cells , 2013 .

[15]  L. Hong,et al.  High‐rate deposition of a‐Si:H thin layers for high‐performance silicon heterojunction solar cells , 2013 .

[16]  Hongjie Zhang,et al.  Hybrid materials based on lanthanide organic complexes: a review. , 2013, Chemical Society reviews.

[17]  Wei Huang,et al.  Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. , 2013, Chemical Society reviews.

[18]  W. Wong,et al.  Increased antenna effect of the lanthanide complexes by control of a number of terdentate N-donor pyridine ligands. , 2012, Inorganic chemistry.

[19]  Cheng‐Hui Li,et al.  Improving spectral response of monocrystalline silicon photovoltaic modules using high efficient luminescent down‐shifting Eu3+ complexes , 2012 .

[20]  D. Jin,et al.  Time-gated luminescence microscopy allowing direct visual inspection of lanthanide-stained microorganisms in background-free condition. , 2011, Analytical chemistry.

[21]  Zhuo Sun,et al.  CdS quantum dot-embedded silica film as luminescent down-shifting layer for crystalline Si solar cells , 2010 .

[22]  D. Narducci,et al.  Encapsulating Eu3+ complex doped layers to improve Si‐based solar cell efficiency , 2009 .

[23]  G. Calzaferri,et al.  Nanochannels for supramolecular organization of luminescent guests , 2009 .

[24]  B. Richards,et al.  Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review , 2009 .

[25]  J. Bünzli,et al.  Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.

[26]  J. Bünzli,et al.  Lanthanide luminescence for functional materials and bio-sciences. , 2010, Chemical Society reviews.