The upward closure of a perfect thin class
暂无分享,去创建一个
[1] Jeff B. Paris. Measure and minimal degrees , 1977 .
[2] Peter A. Cholak,et al. Automorphisms of the lattice of Π₁⁰ classes; perfect thin classes and anc degrees , 2001 .
[3] Donald A. Martin,et al. Axiomatizable Theories with Few Axiomatizable Extensions , 1970, J. Symb. Log..
[4] S. G. Simpson. An extension of the recursively enumerable Turing degrees , 2007 .
[5] A. Nies. Computability and randomness , 2009 .
[6] R. Soare. Recursively enumerable sets and degrees , 1987 .
[7] Zofia Adamowicz. On Maximal Theories , 1991, J. Symb. Log..
[8] Rodney G. Downey,et al. Abstract dependence, recursion theory, and the lattice of recursively enumerable filters , 1983, Bulletin of the Australian Mathematical Society.
[9] Ming Li,et al. Kolmogorov Complexity and its Applications , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[10] Rodney G. Downey,et al. Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.
[11] Douglas Cenzer,et al. Countable Thin Pi01 Classes , 1993, Ann. Pure Appl. Log..
[12] Douglas Cenzer. ∏10 Classes in Computability Theory , 1999, Handbook of Computability Theory.
[13] André Nies,et al. Calibrating Randomness , 2006, Bull. Symb. Log..
[14] Stephen G. Simpson. Mass problems and randomness , 2005, Bull. Symb. Log..
[15] R. Soare,et al. Π⁰₁ classes and degrees of theories , 1972 .