Transient modeling of ultrasonic guided waves in circular viscoelastic waveguides for inverse material characterization

In this contribution, we present an efficient approach for the transient and time-causal modeling of guided waves in viscoelastic cylindrical waveguides in the context of ultrasonic material characterization. We use the scaled boundary finite element method (SBFEM) for efficient computation of the phase velocity dispersion. Regarding the viscoelastic behavior of the materials under consideration, we propose a decomposition approach that considers the real-valued frequency dependence of the (visco-)elastic moduli and, separately, of their attenuation. The modal expansion approach is utilized to take the transmitting and receiving transducers into account and to propagate the excited waveguide modes through a waveguide of finite length. The effectiveness of the proposed simulation model is shown by comparison with a standard transient FEM simulation as well as simulation results based on the exact solution of the complex-valued viscoelastic guided wave problem. Two material models are discussed, namely the fractional Zener model and the anti-Zener model; we re-interpret the latter in terms of the Rayleigh damping model. Measurements are taken on a polypropylene sample and the proposed transient simulation model is used for inverse material characterization. The extracted material properties may then be used in computer-aided design of ultrasonic systems.

[1]  C. Chree The Equations of an Isotropic Elastic Solid in Polar and Cylindrical Co-ordinates their Solution and Application , 1889 .

[2]  C. Zener Elasticity and anelasticity of metals , 1948 .

[3]  Edwin Hewitt,et al.  Integration by Parts for Stieltjes Integrals , 1960 .

[4]  J. Ferry Viscoelastic properties of polymers , 1961 .

[5]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[6]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[7]  M. Fama RADIAL EIGENFUNCTIONS FOR THE ELASTIC CIRCULAR CYLINDER , 1972 .

[8]  An orthogonality relation for the modes of wave propagation in an elastic circular cylinder , 1975 .

[9]  Don L. Anderson,et al.  Velocity dispersion due to anelasticity; implications for seismology and mantle composition , 1976 .

[10]  Mathias Fink,et al.  Ultrasonic Signal Processing for in Vivo Attenuation Measurement: Short Time Fourier Analysis , 1983 .

[11]  A. R. Selfridge,et al.  Approximate Material Properties in Isotropic Materials , 1985, IEEE Transactions on Sonics and Ultrasonics.

[12]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[13]  I. Gladwell,et al.  AXISYMMETRIC WAVES IN A SEMI-INFINITE ELASTIC ROD , 1989 .

[14]  P. Cawley The rapid non-destructive inspection of large composite structures , 1994 .

[15]  Peter B. Nagy,et al.  ULTRASONIC ASSESSMENT OF POISSON'S RATIO IN THIN RODS , 1995 .

[16]  K. Bathe Finite Element Procedures , 1995 .

[17]  T. Pritz,et al.  ANALYSIS OF FOUR-PARAMETER FRACTIONAL DERIVATIVE MODEL OF REAL SOLID MATERIALS , 1996 .

[18]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[19]  D. Chimenti Guided Waves in Plates and Their Use in Materials Characterization , 1997 .

[20]  Jean-Franccois Semblat Rheological Interpretation of Rayleigh Damping , 1997 .

[21]  M. Lowe,et al.  Defect detection in pipes using guided waves , 1998 .

[22]  T. Szabo,et al.  A model for longitudinal and shear wave propagation in viscoelastic media , 2000, The Journal of the Acoustical Society of America.

[23]  W. Lord,et al.  Finite element modeling of transient ultrasonic waves in linear viscoelastic media , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[24]  P. Theocaris,et al.  Spectral decomposition of anisotropic elasticity , 2001 .

[25]  S Holm,et al.  Modified Szabo's wave equation models for lossy media obeying frequency power law. , 2003, The Journal of the Acoustical Society of America.

[26]  T. Pritz Five-parameter fractional derivative model for polymeric damping materials , 2003 .

[27]  Subhendu K. Datta,et al.  Transient ultrasonic guided waves in layered plates with rectangular cross section , 2003 .

[28]  F Simonetti,et al.  A guided wave technique for the characterization of highly attenuative viscoelastic materials. , 2003, The Journal of the Acoustical Society of America.

[29]  Manfred Kaltenbacher,et al.  Numerical Simulation of Mechatronic Sensors and Actuators , 2004 .

[30]  Chrysoula Tsogka,et al.  A TIME DOMAIN METHOD FOR MODELING VISCOACOUSTIC WAVE PROPAGATION , 2004 .

[31]  J. Rose,et al.  Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[32]  F. Jenot,et al.  Modal Waves Solved in Complex Wave Number , 2005 .

[33]  W. Martienssen,et al.  Springer handbook of condensed matter and materials data , 2005 .

[34]  M L Peterson,et al.  A semi-analytical model for predicting multiple propagating axially symmetric modes in cylindrical waveguides. , 2005, Ultrasonics.

[35]  Ivan Bartoli,et al.  Modeling wave propagation in damped waveguides of arbitrary cross-section , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[36]  Lin Ye,et al.  Guided Lamb waves for identification of damage in composite structures: A review , 2006 .

[37]  Krishnan Balasubramaniam,et al.  Genetic algorithm based reconstruction of the elastic moduli of orthotropic plates using an ultrasonic guided wave single-transmitter-multiple-receiver SHM array , 2007 .

[38]  Alessandro Marzani,et al.  Time–transient response for ultrasonic guided waves propagating in damped cylinders , 2008 .

[39]  B. Hosten,et al.  Comments on the ultrasonic estimation of the viscoelastic properties of anisotropic materials , 2008 .

[40]  Henrique M Reis,et al.  Longitudinal guided waves for monitoring corrosion in reinforced mortar , 2008 .

[41]  Ernesto Monaco,et al.  A wave propagation and vibration-based approach for damage identification in structural components , 2009 .

[42]  D. Roy Mahapatra,et al.  On the sensitivity of elastic waves due to structural damages : Time-frequency based indexing method , 2009 .

[43]  Chongmin Song,et al.  The scaled boundary finite element method in structural dynamics , 2009 .

[44]  Andreas Schröder,et al.  Computer-assisted design of transducers for ultrasonic sensor systems , 2009 .

[45]  Piervincenzo Rizzo,et al.  Ultrasonic guided waves for nondestructive evaluation/structural health monitoring of trusses , 2010 .

[46]  Arturo Baltazar,et al.  Study of wave propagation in a multiwire cable to determine structural damage , 2010 .

[47]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[48]  Peter W. Tse,et al.  Evaluation of pipeline defect's characteristic axial length via model-based parameter estimation in ultrasonic guided wave-based inspection , 2011 .

[49]  Joël Piraux,et al.  Numerical modeling of transient two-dimensional viscoelastic waves , 2011, J. Comput. Phys..

[50]  Piervincenzo Rizzo,et al.  Semi-analytical formulation for the guided waves-based reconstruction of elastic moduli , 2011 .

[51]  S. P. Näsholm,et al.  A causal and fractional all-frequency wave equation for lossy media. , 2011, The Journal of the Acoustical Society of America.

[52]  F. Mainardi,et al.  Creep, relaxation and viscosity properties for basic fractional models in rheology , 2011, 1110.3400.

[53]  Fernando Seco,et al.  Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides , 2012 .

[54]  Zahari Zlatev,et al.  On the scattering of longitudinal elastic waves from axisymmetric defects in coated pipes , 2012 .

[55]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[56]  Sverre Holm,et al.  On a fractional Zener elastic wave equation , 2012 .

[57]  Hauke Gravenkamp,et al.  The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method. , 2012, The Journal of the Acoustical Society of America.

[58]  Hauke Gravenkamp,et al.  A numerical approach for the computation of dispersion relations for plate structures using the Scaled Boundary Finite Element Method , 2012 .

[59]  Fabian Bause,et al.  Sensitivity study of signal characteristics for an inverse waveguide based approach of material characterization , 2012, 2012 IEEE International Ultrasonics Symposium.

[60]  A3.2 - Design, modeling and identification of an ultrasonic composite transducer for target impedance independent short pulse generation , 2013 .

[61]  Steve Vanlanduit,et al.  Material properties identification using ultrasonic waves and laser Doppler vibrometer measurements: a multi-input multi-output approach , 2013 .

[62]  Fabian Bause,et al.  Ultrasonic waveguide signal decomposition using the synchrosqueezed wavelet transform for modal group delay computation , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[63]  B. Henning,et al.  Messsystem zur Bestimmung akustischer Kenngrößen stark absorbierender, transversal isotroper Kunststoffe , 2012 .

[64]  Hauke Gravenkamp,et al.  The computation of dispersion relations for three-dimensional elastic waveguides using the Scaled Boundary Finite Element Method , 2013 .

[65]  Hauke Gravenkamp,et al.  The computation of dispersion relations for axisymmetric waveguides using the Scaled Boundary Finite Element Method. , 2014, Ultrasonics.

[66]  Jing Lin,et al.  Mode identification and extraction of broadband ultrasonic guided waves , 2014 .

[67]  H. Gravenkamp,et al.  Time-causal material modeling in the simulation of guided waves in circular viscoelastic waveguides , 2014, 2014 IEEE International Ultrasonics Symposium.

[68]  Hauke Gravenkamp,et al.  Computation of dispersion curves for embedded waveguides using a dashpot boundary condition. , 2014, The Journal of the Acoustical Society of America.

[69]  Fabian Bause,et al.  On the computation of dispersion curves for axisymmetric elastic waveguides using the Scaled Boundary Finite Element Method , 2014 .