Nonlinear vibration of dielectric elastomer incorporating strain stiffening

Abstract Due to the strain-stiffening of polymer chains, a membrane of dielectric elastomer (DE) can reach two different stable equilibrium states under a static electrical load. In this paper, a theoretical model is developed to investigate the strain-stiffening effect on the nonlinear vibration of a circular DE membrane subjected to electro-mechanical loading. Free vibration, steady parametric excitation and chaos of the DE membrane undergoing large deformation are studied respectively. We find that after a small perturbation the DE membrane vibrates steadily around the two stable stretches and two natural frequencies exist for the same loading condition. With the increase of initial perturbation energy, the amplitude–frequency response of free vibration shows a transition from behaving like a soft spring to a hard spring attributed to strain-stiffening effect. When driven by a sinusoidal voltage, the DE membrane can resonate at multiple frequencies of excitation around small and large stable equilibrium states respectively. Variation of the sinusoidal voltage may induce a sudden change from steady vibration to chaos and the critical conditions for the transition are numerically calculated.

[1]  Zhigang Suo,et al.  A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers , 2012 .

[2]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[3]  Xuanhe Zhao,et al.  Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning , 2014, Nature Communications.

[4]  Zhigang Suo,et al.  Electromechanical hysteresis and coexistent states in dielectric elastomers , 2007 .

[5]  Hoa Phung,et al.  A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators , 2014 .

[6]  D. De Rossi,et al.  Bioinspired Tunable Lens with Muscle‐Like Electroactive Elastomers , 2011 .

[7]  F. Carpi,et al.  Stretchable optical device with electrically tunable absorbance and fluorescence , 2013 .

[8]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[9]  Isao Shimoyama,et al.  Stretchable tri-axis force sensor using conductive liquid , 2014 .

[10]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[11]  Z. Suo,et al.  Maximizing the Energy Density of Dielectric Elastomer Generators Using Equi‐Biaxial Loading , 2013 .

[12]  Iain A. Anderson,et al.  Soft Two-Degree-of-Freedom Dielectric Elastomer Position Sensor Exhibiting Linear Behavior , 2015, IEEE/ASME Transactions on Mechatronics.

[13]  Z. Suo,et al.  Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers , 2012 .

[14]  C. Keplinger,et al.  Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability , 2013 .

[15]  N. C. Goulbourne,et al.  On the dynamic electromechanical loading of dielectric elastomer membranes , 2008 .

[16]  Z. Suo,et al.  Large conversion of energy in dielectric elastomers by electromechanical phase transition , 2012, Acta Mechanica Sinica.

[17]  Yoseph Bar-Cohen,et al.  EAP as artificial muscles: progress and challenges , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  Seyul Son,et al.  Dynamic response of tubular dielectric elastomer transducers , 2010 .

[19]  Kang Wei,et al.  Electroactive liquid lens driven by an annular membrane. , 2014, Optics letters.

[20]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[21]  Zhigang Suo,et al.  Nonlinear oscillation of a dielectric elastomer balloon , 2010 .

[22]  Zhigang Suo,et al.  Resonant behavior of a membrane of a dielectric elastomer , 2010 .

[23]  Rahimullah Sarban,et al.  Grey‐Box Model‐Based Vibration Isolation Using a Dielectric Elastomer Actuator , 2013 .

[24]  Samuel Rosset,et al.  Dielectric elastomer generators that stack up , 2014 .

[25]  M. Dadras,et al.  Voltage Control of the Resonance Frequency of Dielectric Electroactive Polymer (DEAP) Membranes , 2008, Journal of Microelectromechanical Systems.

[26]  Z. Suo,et al.  Propagation of instability in dielectric elastomers , 2008 .

[27]  Tongqing Lu,et al.  Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube , 2015 .

[28]  Z. Suo,et al.  Electromechanical phase transition in dielectric elastomers , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  D. De Rossi,et al.  Stretching Dielectric Elastomer Performance , 2010, Science.

[30]  Todd A. Gisby,et al.  Multi-functional dielectric elastomer artificial muscles for soft and smart machines , 2012 .

[31]  C. Keplinger,et al.  Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation , 2012 .

[32]  Ron Pelrine,et al.  Dielectric elastomers: Stretching the capabilities of energy harvesting , 2012 .

[33]  Shaoxing Qu,et al.  Electromechanical and dynamic analyses of tunable dielectric elastomer resonator , 2012 .

[34]  C. Keplinger,et al.  25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters , 2013, Advanced materials.

[35]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[36]  Bo Li,et al.  Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation , 2014 .

[37]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[38]  D. Clarke,et al.  Tunable lenses using transparent dielectric elastomer actuators. , 2013, Optics express.

[39]  Choon Chiang Foo,et al.  Giant, voltage-actuated deformation of a dielectric elastomer under dead load , 2012 .

[40]  Heydt,et al.  Acoustical performance of an electrostrictive polymer film loudspeaker , 2000, The Journal of the Acoustical Society of America.