An Improved Force Field for O2, CO and CN Binding to Metalloporphyrins

Parametrization of a molecular-mechanics program to include terms specific for five- and six-coordinate transition metal complexes is applied to heme complexes. The principal new feature peculiar to five and six coordination is a term that represents the effect of electron-pair repulsion modified by the ligand electronegativity and takes into account the different possible structures of complexes. The model system takes into account the structural differences of the fixing centre in the haemoglobin subunits. The customary proximal histidine is added. The macrocycle heme IX is wholly considered in our model. The calculations show clearly that certain conformations of heme IX–histidine models are much more favourable than others for fixing O2. From the O2 binding in haemoglobin and myoglobin and in simple Fe porphyrin models it is concluded that the bent O2 ligand is best viewed as bound superoxide, O2−. Rotation of axial ligands are practically free. A small modification of the model in both crystal and protein matrix affects the orientation of the ligands in experimental systems.

[1]  J. Barber,et al.  Revealing the blueprint of photosynthesis , 1994, Nature.

[2]  Mikael P. Johansson,et al.  Change in electron and spin density upon electron transfer to haem. , 2002, Biochimica et biophysica acta.

[4]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[5]  L. Bartell,et al.  Molecular structure of (CH3)3PF2: An electron diffraction study of an analogue of ArF2 , 1973 .

[6]  A. Veillard,et al.  Ab Initio Calculations of Metalloporphyrins , 1982 .

[7]  Francisco Torrens,et al.  Molecular polarizability of fullerenes and endohedral metallofullerenes , 2002 .

[8]  James E. Huheey,et al.  The Electronegativity of Groups , 1965 .

[9]  Gilda H. Loew,et al.  Structure and Spectra of Ferrous Dioxygen and Reduced Ferrous Dioxygen Model Cytochrome P450 , 1998 .

[10]  R. T. Sanderson,et al.  An Interpretation of Bond Lengths and a Classification of Bonds. , 1951, Science.

[11]  Teizo Kitagawa,et al.  The Proximal Residue Largely Determines the CO Distortion in Carbon Monoxy Globin Proteins. An ab Initio Study of a Heme Prosthetic Unit , 1995 .

[12]  Mikael P. Johansson,et al.  The spin distribution in low-spin iron porphyrins. , 2002, Journal of the American Chemical Society.

[13]  Michele Parrinello,et al.  A comparative study of O2, CO, and NO binding to iron–porphyrin , 1998 .

[14]  Michele Parrinello,et al.  The Iron−Sulfur Bond in Cytochrome c , 1999 .

[15]  Teizo Kitagawa,et al.  THE PROXIMAL RESIDUE LARGELY DETERMINES THE CO DISTORTION IN CARBONMONOXY GLOBIN PROTEINS. AN AB INITIO STUDY OF A HEME PROSTHETIC UNIT , 1994 .

[16]  James P. Collman,et al.  Structure of a dioxygen adduct of (1-methylimidazole)-meso-tetrakis(.alpha.,.alpha.,.alpha.,.alpha.,-o-pivalamidophenyl)porphinatoiron(II). An iron dioxygen model for the heme component of oxymyoglobin , 1978 .

[17]  A. C. Nunes,et al.  Neutron diffraction analysis of myoglobin: structure of the carbon monoxide derivative , 1975, Science.

[18]  Ben F. Luisi,et al.  Stereochemistry of cooperative mechanisms in hemoglobin , 1987 .

[19]  Judith C. Gallucci,et al.  Pentacoordinated molecules. 24. Computer simulation of phosphorane structures , 1977 .

[20]  David F. Bocian,et al.  Carbonyl Tilting and Bending Potential Energy Surface of Carbon Monoxyhemes , 1996 .

[21]  G. Loew,et al.  Identification of putative peroxide intermediates of peroxidases by electronic structure and spectra calculations , 1996 .

[22]  M. Dupuis,et al.  Structure of a Model Transient Peroxide Intermediate of Peroxidases by ab Initio Methods , 1996 .

[23]  J. Fettinger,et al.  Structural characterization of a sterically encumbered iron(II) porphyrin CO complex , 1989 .

[24]  Michele Parrinello,et al.  Equilibrium Geometries and Electronic Structure of Iron−Porphyrin Complexes: A Density Functional Study , 1997 .

[25]  Michael T. Green ROLE OF THE AXIAL LIGAND IN DETERMINING THE SPIN STATE OF RESTING CYTOCHROME P450 , 1998 .

[26]  A. Veillard,et al.  Structure and properties of a model of deoxyheme, an ab initio SCF calculation , 1983 .

[27]  Francisco Torrens,et al.  Polarization Force Fields for Peptides Implemented in ECEPP2 and MM2 , 2000 .

[28]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[29]  K. Suslick,et al.  Models for the Active Site of Oxygen-Binding Hemoproteins. Dioxygen Binding Properties and the Structures of (2-Methylimidazole)-meso-tetra(α,α,α,α-o-Pivalamidophenyl)porphyrinatoiron(II)-Ethanol and Its Dioxygen Adduct , 1980 .

[30]  E. Oldfield,et al.  Carbonyl Complexes of Iron(II), Ruthenium(II), and Osmium(II) 5,10,15,20-Tetraphenylporphyrinates: A Comparative Investigation by X-ray Crystallography, Solid-State NMR Spectroscopy, and Density Functional Theory , 1998 .

[31]  R. Huber,et al.  Structures of deoxy- and carbonmonoxy-erythrocruorin. , 1970, Journal of molecular biology.

[32]  JOSEPH J. WEISS,et al.  Nature of the Iron–Oxygen Bond in Oxyhæmoglobin , 1964, Nature.

[33]  M. Halcrow,et al.  Biomimetic Chemistry of Nickel , 1994 .

[34]  Christopher A. Reed,et al.  Synthetic Heme Dioxygen Complexes , 1994 .

[35]  G. Loew,et al.  An ab Initio Model System Investigation of the Proposed Mechanism for Activation of Peroxidases: Cooperative Catalytic Contributions from the Ion and Microsolvent Water , 1998 .

[36]  J. Dawson,et al.  Heme-Containing Oxygenases. , 1996, Chemical reviews.

[37]  Francisco Torrens,et al.  Nature of FeIII-O2, FeII-CO and FeIII-CN complexes of hemoprotein models , 2003 .

[38]  J. Landrum,et al.  X-ray diffraction study of the electronic ground state of (meso-tetraphenylporphinato)iron(II) , 1990 .

[39]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[40]  T. Spiro,et al.  Discordant Results on FeCO Deformability in Heme Proteins Reconciled by Density Functional Theory , 1998 .

[41]  M. Rohmer Electronic ground state of iron(II)porphyrin. Ab initio SCF and CI calculations and computed electron deformation densities , 1985 .

[42]  Michele Parrinello,et al.  A density functional study of iron-porphyrin complexes , 1997 .

[43]  E. Oldfield,et al.  Solid-State NMR, Crystallographic and Density Functional Theory Investigation of Fe−CO and Fe−CO Analogue Metalloporphyrins and Metalloproteins† , 1999 .

[44]  Robert S. Mulliken,et al.  Formulas and Numerical Tables for Overlap Integrals , 1949 .

[45]  Jean-Didier Maréchal,et al.  Theoretical modeling of the heme group with a hybrid QM/MM method , 2000 .

[46]  E. Padlan,et al.  Three-dimensional structure of hemoglobin from the polychaete annelid, Glycera dibranchiata, at 2.5 A resolution. , 1974, The Journal of biological chemistry.

[47]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[48]  Francisco Torrens,et al.  Conformational aspects of some asymmetric Diels-Alder reactions. A molecular mechanics + polarization study , 1992 .

[49]  Kyeongjae Cho,et al.  Ab initio study on the molecular recognition by metalloporphyrins: CO interaction with iron porphyrin , 1999 .

[50]  T. L. Hill,et al.  Steric Effects. I. Van der Waals Potential Energy Curves , 1948 .

[51]  Feliu Maseras,et al.  Binding of dioxygen in a picket-fence porphyrin complex of iron. A theoretical QM/MM study , 1998 .

[52]  Christopher A. Reed,et al.  A deoxymyoglobin model with a sterically unhindered axial imidazole , 1988 .