Restriction Bounds for the Free Resolvent and Resonances in Lossy Scattering

We establish high energy $L^2$ estimates for the restriction of the free Green's function to hypersurfaces in $\mathbb{R}^d$. As an application, we estimate the size of a logarithmic resonance free region for scattering by potentials of the form $V\otimes \delta_{\Gamma}$, where $\Gamma \subset \mathbb{R}^d$ is a finite union of compact subsets of embedded hypersurfaces. In odd dimensions we prove a resonance expansion for solutions to the wave equation with such a potential.

[1]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[2]  Louis Boutet de Monvel Comportement d'un opérateur pseudo-différentiel sur une variété à bord , 1966 .

[3]  Daniel Tataru,et al.  ON THE REGULARITY OF BOUNDARY TRACES FOR THE WAVE EQUATION , 1998 .

[4]  Maciej Zworski,et al.  Resonance expansions of scattered waves , 2000 .

[5]  Barry Simon,et al.  Analysis of Operators , 1978 .

[6]  R. Phillips,et al.  A logrithmic bound on the location of the poles of the scattering matrix , 1972 .

[7]  J. Craggs Applied Mathematical Sciences , 1973 .

[8]  C J Isham,et al.  Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .

[9]  Mirages and many-body effects in quantum corrals , 2004, cond-mat/0412772.

[10]  L. B. Monvel Comportement d'un opérateur pseudo-différentiel sur une variété à bord , 1966 .

[11]  Brian Davies,et al.  Partial Differential Equations II , 2002 .

[12]  E. Stein Singular Integrals and Differentiability Properties of Functions (PMS-30), Volume 30 , 1971 .

[13]  Jeffrey Galkowski,et al.  Distribution of Resonances in Scattering by Thin Barriers , 2014, Memoirs of the American Mathematical Society.

[14]  Hart F. Smith Spectral cluster estimates for C1,1 metrics , 2006 .

[15]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[16]  R. Melrose Scattering theory and the trace of the wave group , 1982 .

[17]  William G. Faris Review: Michael Reed and Barry Simon, Methods of modern mathematical physics, vol. III, Scattering theory, and Michael Reed and Barry Simon, Methods of modern mathematical physics, vol. IV, Analysis of operators , 1980 .

[18]  P. Burke Potential Scattering in Atomic Physics , 1977 .

[19]  Gerd Grubb,et al.  Pseudodifferential methods for boundary value problems , 2009 .

[20]  Michael E. Taylor,et al.  Partial Differential Equations II: Qualitative Studies of Linear Equations , 1996 .

[21]  G. Vodev,et al.  DISTRIBUTION OF RESONANCES AND LOCAL ENERGY DECAY IN THE TRANSMISSION PROBLEM. II , 1999 .

[22]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[23]  B. Vainberg,et al.  Asymptotic methods in equations of mathematical physics , 1989 .

[24]  E. Heller,et al.  Quantum corrals , 1995 .

[25]  Melissa Tacy,et al.  Semiclassical L p Estimates of Quasimodes on Submanifolds , 2009, 0905.2240.

[26]  $L^q$ bounds on restrictions of spectral clusters to submanifolds for low regularity metrics , 2012, 1202.6385.

[27]  V. Edwards Scattering Theory , 1973, Nature.

[28]  E. Heller,et al.  Quantum corral resonance widths: lossy scattering as acoustics. , 2010, Nano letters.

[29]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[30]  M. Zworski RESONANCES IN PHYSICS AND GEOMETRY , 1999 .

[31]  Allan Greenleaf,et al.  Fourier integral operators with fold singularities. , 1994 .

[32]  Andrew Hassell,et al.  Semiclassical Lp Estimates of Quasimodes on Curved Hypersurfaces , 2010, 1002.1119.

[33]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .