A locally refinable T-spline finite element method for CAD/CAE integration

T-splines are recently proposed mathematical tools for geometric modeling, which are generalizations of B-splines. Local refinement can be performed effectively using T-splines while it is not the case when B-splines or NURBS are used. Using T-splines, patches with unmatched boundaries can be combined easily without special techniques. In the present study, an analysis framework using T-splines is proposed. In this framework, T-splines are used both for description of geometries and for approximation of solution spaces. This analysis framework can be a basis of a CAD/CAE integrated approach. In this approach, CAD models are directly imported as the analysis models without additional finite element modeling. Some numerical examples are presented to illustrate the effectiveness of the current analysis framework.

[1]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[2]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[3]  Xunnian Yang,et al.  Free-form deformation with weighted T-spline , 2005, The Visual Computer.

[4]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[5]  S. Kim,et al.  High-Performance Domainwise Parallel Direct Solver for Large-Scale Structural Analysis , 2005 .

[6]  G. Subbarayan,et al.  CAD inspired hierarchical partition of unity constructions for NURBS‐based, meshless design, analysis and optimization , 2007 .

[7]  Ganesh Subbarayan,et al.  jNURBS: An object-oriented, symbolic framework for integrated, meshless analysis and optimal design , 2006, Adv. Eng. Softw..

[8]  Maenghyo Cho,et al.  Development of geometrically exact new shell elements based on general curvilinear co‐ordinates , 2003 .

[9]  Maenghyo Cho,et al.  The application of geometrically exact shell elements to B-spline surfaces , 2004 .

[10]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[11]  Ganesh Subbarayan,et al.  Constructive solid analysis: a hierarchical, geometry-based meshless analysis procedure for integrated design and analysis , 2004, Comput. Aided Des..

[12]  M. Cho,et al.  Integration of geometric design and mechanical analysis using B‐spline functions on surface , 2005 .

[13]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[14]  Reinhard Klein,et al.  GPU-based trimming and tessellation of NURBS and T-Spline surfaces , 2005, SIGGRAPH 2005.

[15]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[16]  T. Y. Yang,et al.  A new 48 d.o.f. quadrilateral shell element with variable-order polynomial and rational B-spline geometries with rigid body modes , 1984 .

[17]  S. C. Fan,et al.  A Nine-Node Spline Element Folk Free Vibration Analysis of General Plates , 1993 .

[18]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[19]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[20]  He Peixiang,et al.  Bending analysis of plates and spherical shells by multivariable spline element method based on generalized variational principle , 1995 .

[21]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[22]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[23]  Shen Pengcheng,et al.  Multivariable spline element analysis for plate bending problems , 1991 .

[24]  M. Rayasam,et al.  A meshless, compositional approach to shape optimal design , 2007 .

[25]  Tomoya Masuyama,et al.  A nurbs finite element method for product shape design , 2005 .