miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions

MicroRNAs (miRNAs) are small non-coding RNA molecules capable of negatively regulating gene expression to control many cellular mechanisms. The miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw/) provides the most current and comprehensive information of experimentally validated miRNA-target interactions. The database was launched in 2010 with data sources for >100 published studies in the identification of miRNA targets, molecular networks of miRNA targets and systems biology, and the current release (2013, version 4) includes significant expansions and enhancements over the initial release (2010, version 1). This article reports the current status of and recent improvements to the database, including (i) a 14-fold increase to miRNA-target interaction entries, (ii) a miRNA-target network, (iii) expression profile of miRNA and its target gene, (iv) miRNA target-associated diseases and (v) additional utilities including an upgrade reminder and an error reporting/user feedback system.

[1]  G. Hutvagner,et al.  Principles and effects of microRNA-mediated post-transcriptional gene regulation , 2006, Oncogene.

[2]  Ying Liu,et al.  Matched miRNA and mRNA signatures from an hESC-based in vitro model of pancreatic differentiation reveal novel regulatory interactions , 2013, Journal of Cell Science.

[3]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[4]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[5]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[6]  Kyle Kai-How Farh,et al.  Expanding the microRNA targeting code: functional sites with centered pairing. , 2010, Molecular cell.

[7]  Gregory J. Hannon,et al.  Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. , 2010, Molecular cell.

[8]  Michel Sadelain,et al.  miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. , 2011, Cell stem cell.

[9]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[10]  Tim Beißbarth,et al.  Detection of Simultaneous Group Effects in MicroRNA Expression and Related Target Gene Sets , 2012, PloS one.

[11]  Jernej Ule,et al.  CLIP Identifies Nova-Regulated RNA Networks in the Brain , 2003, Science.

[12]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[13]  Peng Liu,et al.  miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer's disease, inhibits bcl2 translation , 2009, Brain Research Bulletin.

[14]  Mohsen Khorshid,et al.  CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins , 2010, Nucleic Acids Res..

[15]  Gaofeng Wang,et al.  Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. , 2008, American journal of human genetics.

[16]  Jui-Yu Hsieh,et al.  Pediatric primary central nervous system germ cell tumors of different prognosis groups show characteristic miRNome traits and chromosome copy number variations , 2010, BMC Genomics.

[17]  Hong Wu,et al.  Integrative Survival-Based Molecular Profiling of Human Pancreatic Cancer , 2012, Clinical Cancer Research.

[18]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[19]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[20]  Israel Steinfeld,et al.  miRNA-mRNA Integrated Analysis Reveals Roles for miRNAs in Primary Breast Tumors , 2011, PloS one.

[21]  Q. Cui,et al.  An Analysis of Human MicroRNA and Disease Associations , 2008, PloS one.

[22]  Rainer Spang,et al.  A Least Angle Regression Model for the Prediction of Canonical and Non-Canonical miRNA-mRNA Interactions , 2012, PloS one.

[23]  B. Morris,et al.  Gene Expression Profiling Reveals Renin mRNA Overexpression in Human Hypertensive Kidneys and a Role for MicroRNAs , 2011, Hypertension.

[24]  Kim Vn,et al.  Small RNAs: classification, biogenesis, and function. , 2005, Molecules and cells.

[25]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[26]  Christoph Dieterich,et al.  doRiNA: a database of RNA interactions in post-transcriptional regulation , 2011, Nucleic Acids Res..

[27]  C. Sander,et al.  Integrative genomic profiling of human prostate cancer. , 2010, Cancer cell.

[28]  Martin Reczko,et al.  DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs , 2012, Nucleic Acids Res..

[29]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[30]  Amar Gajjar,et al.  Cross-species genomics matches driver mutations and cell compartments to model ependymoma , 2010, Nature.

[31]  Maarten van Iterson,et al.  Integrated analysis of microRNA and mRNA expression: adding biological significance to microRNA target predictions , 2013, Nucleic acids research.

[32]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[33]  Yun Zheng,et al.  Transcriptome-wide identification of microRNA targets in rice. , 2010, The Plant journal : for cell and molecular biology.

[34]  Robert M Nerem,et al.  Discovery of shear- and side-specific mRNAs and miRNAs in human aortic valvular endothelial cells. , 2011, American journal of physiology. Heart and circulatory physiology.

[35]  Norbert Gretz,et al.  miRWalk - Database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes , 2011, J. Biomed. Informatics.

[36]  Doron Betel,et al.  The microRNA.org resource: targets and expression , 2007, Nucleic Acids Res..

[37]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[38]  Pamela J Green,et al.  Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome , 2009, Nature Protocols.

[39]  Dennis B. Troup,et al.  NCBI GEO: mining tens of millions of expression profiles—database and tools update , 2006, Nucleic Acids Res..

[40]  David R Williams,et al.  High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2 , 2010, Proceedings of the National Academy of Sciences.

[41]  Tim R. Mercer,et al.  Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage , 2011, Nucleic acids research.

[42]  Yadong Wang,et al.  miR2Disease: a manually curated database for microRNA deregulation in human disease , 2008, Nucleic Acids Res..

[43]  V. Kim,et al.  Small RNAs : Classification , Biogenesis , and Function , 2005 .

[44]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[45]  Xiaowei Wang miRDB: a microRNA target prediction and functional annotation database with a wiki interface. , 2008, RNA.

[46]  K. Schulze-Osthoff,et al.  Regulation of apoptosis by alternative pre-mRNA splicing. , 2005, Molecular cell.

[47]  Kenichi Sugihara,et al.  Microarray Analysis of Colorectal Cancer Stromal Tissue Reveals Upregulation of Two Oncogenic miRNA Clusters , 2012, Clinical Cancer Research.

[48]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[49]  Pablo Mir,et al.  Genetic association of sirtuin genes and Parkinson’s disease , 2013, Journal of Neurology.

[50]  Panayiotis V. Benos,et al.  mirConnX: condition-specific mRNA-microRNA network integrator , 2011, Nucleic Acids Res..

[51]  Elizabeth Head,et al.  Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human down syndrome brains. , 2013, The Journal of Biological Chemistry.

[52]  Yi-Hsuan Chen,et al.  miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes , 2007, Nucleic Acids Res..

[53]  Ronald S Go,et al.  miRNA expression in diffuse large B-cell lymphoma treated with chemoimmunotherapy. , 2011, Blood.

[54]  Nectarios Koziris,et al.  TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support , 2011, Nucleic Acids Res..

[55]  Bo Zhang,et al.  Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. , 2011, Carcinogenesis.

[56]  Gary D. Bader,et al.  Cytoscape Web: an interactive web-based network browser , 2010, Bioinform..

[57]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[58]  Gabriele Sales,et al.  MAGIA2: from miRNA and genes expression data integrative analysis to microRNA–transcription factor mixed regulatory circuits (2012 update) , 2012, Nucleic Acids Res..

[59]  Sanghyuk Lee,et al.  miRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting , 2012, Nucleic Acids Res..

[60]  Gabriele Sales,et al.  Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. , 2009, Blood.

[61]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[62]  David Galas,et al.  Gene expression networks in COPD: microRNA and mRNA regulation , 2011, Thorax.

[63]  Timos K. Sellis,et al.  miRGen 2.0: a database of microRNA genomic information and regulation , 2009, Nucleic Acids Res..

[64]  Stefan H. E. Kaufmann,et al.  Common patterns and disease-related signatures in tuberculosis and sarcoidosis , 2012, Proceedings of the National Academy of Sciences.

[65]  Debojyoti Dutta,et al.  Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors , 2006, Bioinform..

[66]  Hui Zhou,et al.  starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data , 2010, Nucleic Acids Res..

[67]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[68]  Ralf Zimmer,et al.  miRSel: Automated extraction of associations between microRNAs and genes from the biomedical literature , 2010, BMC Bioinformatics.

[69]  Michael T. McManus,et al.  Dysregulation of Cardiogenesis, Cardiac Conduction, and Cell Cycle in Mice Lacking miRNA-1-2 , 2007, Cell.

[70]  David Tollervey,et al.  Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast , 2011, Proceedings of the National Academy of Sciences.

[71]  S. Luo,et al.  Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends , 2008, Nature Biotechnology.

[72]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.