On the weak distance-regularity of Moore-type digraphs

We prove that Moore digraphs, and some other classes of extremal digraphs, are weakly distance-regular in the sense that there is an invariance of the number of walks between vertices at a given distance. As weakly distance-regular digraphs, we then compute their complete spectrum from a ‘small’ intersection matrix. This is a very useful tool for deriving some results about their existence and/or their structural properties. For instance, we present here an alternative and unified proof of the existence results on Moore digraphs, Moore bipartite digraphs and, more generally, Moore generalized p-cycles. In addition, we show that the line digraph structure appears as a characteristic property of any Moore generalized p-cycle of diameter D ≥ 2p.

[1]  Juraj Bosák,et al.  Directed graphs and matrix equations , 1978 .

[2]  Bojan Mohar,et al.  Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.

[3]  R. M. Damerell Distance-transitive and distance-regular digraphs , 1981, J. Comb. Theory, Ser. B.

[4]  Hiroshi Suzuki,et al.  Weakly Distance-regular Digraphs , 2003, Discret. Math..

[5]  Robert Elsässer,et al.  New spectral lower bounds on the bisection width of graphs , 2000, Theor. Comput. Sci..

[6]  Miguel Angel Fiol,et al.  Algebraic characterizations of distance-regular graphs , 2002, Discret. Math..

[7]  A. Hoffman,et al.  The polynomial of a directed graph , 1965 .

[8]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[9]  W. Greub Linear Algebra , 1981 .

[10]  J. Gimbert,et al.  On digraphs with unique walks of closed lengths between vertices , 1999, Australas. J Comb..

[11]  A. Hoffman On the Polynomial of a Graph , 1963 .

[12]  G. Chartrand,et al.  Graphs & Digraphs , 1986 .

[13]  Yaokun Wu,et al.  On the matrix equation Al + Al+k = Jn , 1998 .

[14]  Miguel Angel Fiol,et al.  On Moore bipartite digraphs , 2003, J. Graph Theory.

[15]  Miguel Angel Fiol,et al.  The spectra of wrapped butterfly digraphs , 2003, Networks.

[16]  R. M. Damerell On Moore graphs , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Carles Padró,et al.  Large Generalized Cycles , 1998, Discret. Appl. Math..

[18]  Alan J. Hoffman,et al.  On Moore Graphs with Diameters 2 and 3 , 1960, IBM J. Res. Dev..

[19]  Mirka Miller,et al.  On the Structure of Digraphs with Order Close to the Moore Bound , 1998, Graphs Comb..

[20]  Mirka Miller,et al.  Almost Moore digraphs are diregular , 2000, Discret. Math..

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Andrew B. Kahng,et al.  Fast spectral methods for ratio cut partitioning and clustering , 1991, 1991 IEEE International Conference on Computer-Aided Design Digest of Technical Papers.

[23]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[24]  M. A. Fiol,et al.  Dense bipartite digraphs , 1990, J. Graph Theory.

[25]  Mirka Miller,et al.  Regular digraphs of diameter 2 and maximum order , 1994, Australas. J Comb..

[26]  E. Bannai,et al.  On finite Moore graphs , 1973 .

[27]  N. Biggs Algebraic Graph Theory , 1974 .

[28]  F. Chung Diameters and eigenvalues , 1989 .

[29]  Miguel Angel Fiol,et al.  Line Digraph Iterations and the (d, k) Digraph Problem , 1984, IEEE Transactions on Computers.

[30]  Mirka Miller,et al.  Complete characterization of almost Moore digraphs of degree three , 2005, J. Graph Theory.

[31]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[32]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[33]  Sam Toueg,et al.  On the impossibility of Directed Moore Graphs , 1980, J. Comb. Theory, Ser. B.

[34]  D. G. Higman Coherent configurations , 1975 .

[35]  Mirka Miller,et al.  Digraphs of degree 3 and order close to the moore bound , 1995, J. Graph Theory.

[36]  F. R. Gantmakher The Theory of Matrices , 1984 .

[37]  Joan Gimbert,et al.  Enumeration of almost Moore digraphs of diameter two , 2001, Discret. Math..

[38]  Yaokun Wu,et al.  The underlying line digraph structure of some (0, 1)-matrix equations , 2002, Discret. Appl. Math..

[39]  Mirka Miller,et al.  Complete characterization of almost Moore digraphs of degree three , 2005 .

[40]  D. G. Higman Coherent configurations , 1975 .