Riboswitches: emerging themes in RNA structure and function.

Riboswitches are RNAs capable of binding cellular metabolites using a diverse array of secondary and tertiary structures to modulate gene expression. The recent determination of the three-dimensional structures of parts of six different riboswitches illuminates common features that allow riboswitches to be grouped into one of two types. Type I riboswitches, as exemplified by the purine riboswitch, are characterized by a single, localized binding pocket supported by a largely pre-established global fold. This arrangement limits ligand-induced conformational changes in the RNA to a small region. In contrast, Type II riboswitches, such as the thiamine pyrophosphate riboswitch, contain binding pockets split into at least two spatially distinct sites. As a result, binding induces both local changes to the binding pocket and global architecture. Similar organizational themes are found in other noncoding RNAs, making it possible to begin to build a hierarchical classification of RNA structure based on the spatial organization of their active sites and associated secondary structural elements.

[1]  K. Jensen,et al.  Role of hypoxanthine and guanine in regulation of Salmonella typhimurium pur gene expression , 1983, Journal of bacteriology.

[2]  G N Cohen,et al.  Interactions of the Escherichia coli methionine repressor with the metF operator and with its corepressor, S-adenosylmethionine. , 1986, The Journal of biological chemistry.

[3]  Jack W. Szostak,et al.  An RNA motif that binds ATP , 1993, Nature.

[4]  A. Pardi,et al.  High-resolution molecular discrimination by RNA. , 1994, Science.

[5]  R. Rando,et al.  Specific binding of aminoglycoside antibiotics to RNA. , 1995, Chemistry & biology.

[6]  J. Feigon,et al.  Solution structure of an ATP-binding RNA aptamer reveals a novel fold. , 1997, RNA.

[7]  J. Doudna,et al.  A magnesium ion core at the heart of a ribozyme domain , 1997, Nature Structural Biology.

[8]  Grant R. Zimmermann,et al.  Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA , 1997, Nature Structural Biology.

[9]  T. Cech,et al.  An RNA internal loop acts as a hinge to facilitate ribozyme folding and catalysis. , 1997, RNA.

[10]  E. Westhof,et al.  Nucleic acids. From self-assembly to induced-fit recognition. , 1997, Current opinion in structural biology.

[11]  A. Ferré-D’Amaré,et al.  Crystal structure of a hepatitis delta virus ribozyme , 1998, Nature.

[12]  T. Cech,et al.  A preorganized active site in the crystal structure of the Tetrahymena ribozyme. , 1998, Science.

[13]  Dinshaw J. Patel,et al.  Solution structure of the tobramycin–RNA aptamer complex , 1998, Nature Structural Biology.

[14]  M. Gelfand,et al.  A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. , 1999, Trends in genetics : TIG.

[15]  A. Jäschke,et al.  A small catalytic RNA motif with Diels-Alderase activity. , 1999, Chemistry & biology.

[16]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[17]  J. Williamson,et al.  Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain. , 2000, Science.

[18]  J. Williamson Induced fit in RNA–protein recognition , 2000, Nature Structural Biology.

[19]  A. Ferré-D’Amaré,et al.  Crystal structure of a hairpin ribozyme–inhibitor complex with implications for catalysis , 2001, Nature.

[20]  G. Varani,et al.  Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. , 2001, Biochemistry.

[21]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[22]  M. Gelfand,et al.  Comparative Genomics of Thiamin Biosynthesis in Procaryotes , 2002, The Journal of Biological Chemistry.

[23]  R. Breaker,et al.  An mRNA structure that controls gene expression by binding FMN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[25]  Evgeny Nudler,et al.  Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria , 2002, Cell.

[26]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Nobuo Yamashita,et al.  Thiamine‐regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch‐like domain in the 5′‐UTR , 2003, FEBS letters.

[28]  T. Henkin,et al.  Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[30]  Margaret S. Ebert,et al.  An mRNA structure in bacteria that controls gene expression by binding lysine. , 2003, Genes & development.

[31]  P. Nygaard,et al.  Definition of a Second Bacillus subtilis pur Regulon Comprising the pur and xpt-pbuX Operons plus pbuG, nupG (yxjA), and pbuE (ydhL) , 2003, Journal of bacteriology.

[32]  M. Gelfand,et al.  Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? , 2003, Nucleic acids research.

[33]  Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity , 2003, Nature Structural Biology.

[34]  Ali Nahvi,et al.  An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.

[35]  T. Henkin,et al.  The L box regulon: Lysine sensing by leader RNAs of bacterial lysine biosynthesis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Andrey A Mironov,et al.  Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. , 2003, RNA.

[37]  Jeffrey E. Barrick,et al.  Metabolite-binding RNA domains are present in the genes of eukaryotes. , 2003, RNA.

[38]  R. Breaker,et al.  Genetic Control by Metabolite‐Binding Riboswitches , 2003, Chembiochem : a European journal of chemical biology.

[39]  Anastasia Khvorova,et al.  Fast cleavage kinetics of a natural hammerhead ribozyme. , 2004, Journal of the American Chemical Society.

[40]  E. Nudler,et al.  The riboswitch control of bacterial metabolism. , 2004, Trends in biochemical sciences.

[41]  A. Serganov,et al.  Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. , 2004, Chemistry & biology.

[42]  Scott A. Strobel,et al.  Crystal structure of a self-splicing group I intron with both exons , 2004, Nature.

[43]  R. Breaker,et al.  Adenine riboswitches and gene activation by disruption of a transcription terminator , 2004, Nature Structural &Molecular Biology.

[44]  R. Montange,et al.  Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine , 2004, Nature.

[45]  M. O. Fenley,et al.  Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. , 2004, Structure.

[46]  R. Breaker,et al.  Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.

[47]  Zasha Weinberg,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004, Science.

[48]  Michael J Rust,et al.  Single-molecule enzymology of RNA: essential functional groups impact catalysis from a distance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Tim J. P. Hubbard,et al.  SCOP database in 2004: refinements integrate structure and sequence family data , 2004, Nucleic Acids Res..

[50]  K. Weeks,et al.  RNA structure analysis at single nucleotide resolution by selective 2'-hydroxyl acylation and primer extension (SHAPE). , 2005, Journal of the American Chemical Society.

[51]  E. Westhof,et al.  Riboswitch structures: purine ligands replace tertiary contacts. , 2005, Chemistry & biology.

[52]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[53]  A. Serganov,et al.  Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation , 2005, Nature Structural &Molecular Biology.

[54]  G. Siuzdak,et al.  An assembly landscape for the 30S ribosomal subunit , 2005, Nature.

[55]  Wade C Winkler,et al.  Riboswitches and the role of noncoding RNAs in bacterial metabolic control. , 2005, Current opinion in chemical biology.

[56]  R. Batey,et al.  Riboswitches: natural SELEXion , 2005, Cellular and Molecular Life Sciences CMLS.

[57]  B. Golden,et al.  Crystal structure of a phage Twort group I ribozyme–product complex , 2005, Nature Structural &Molecular Biology.

[58]  Akira Nishimura,et al.  Roles of Mg2+ in TPP‐dependent riboswitch , 2005, FEBS letters.

[59]  Jeffrey E. Barrick,et al.  Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria , 2005, Genome Biology.

[60]  R. Breaker,et al.  Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. , 2005, Chemistry & biology.

[61]  A. Ferré-D’Amaré,et al.  Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. , 2006, Structure.

[62]  R. Montange,et al.  Structure of the S-adenosylmethionine riboswitch regulatory mRNA element , 2006, Nature.

[63]  R. Montange,et al.  Structural studies of the purine and SAM binding riboswitches. , 2006, Cold Spring Harbor symposia on quantitative biology.

[64]  D. Lilley,et al.  Folding of the adenine riboswitch. , 2006, Chemistry & biology.

[65]  W. Scott,et al.  Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis , 2006, Cell.

[66]  N. Ban,et al.  Structure of the Eukaryotic Thiamine Pyrophosphate Riboswitch with Its Regulatory Ligand , 2006, Science.

[67]  R. Batey,et al.  The bipartite architecture of the sRNA in an archaeal box C/D complex is a primary determinant of specificity , 2006, Nucleic acids research.

[68]  I. Borovok,et al.  Coenzyme B12 Controls Transcription of the Streptomyces Class Ia Ribonucleotide Reductase nrdABS Operon via a Riboswitch Mechanism , 2006, Journal of bacteriology.

[69]  H. Schwalbe,et al.  Phosphate‐Group Recognition by the Aptamer Domain of the Thiamine Pyrophosphate Sensing Riboswitch , 2006, Chembiochem : a European journal of chemical biology.

[70]  Andrej Lupták,et al.  A Genomewide Search for Ribozymes Reveals an HDV-Like Sequence in the Human CPEB3 Gene , 2006, Science.

[71]  R. Batey,et al.  Mix-and-match riboswitches. , 2006, ACS chemical biology.

[72]  James W. Brown,et al.  The RNA Ontology Consortium: an open invitation to the RNA community. , 2006, RNA.

[73]  T. Henkin,et al.  The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase , 2006, Nature Structural &Molecular Biology.

[74]  A. Ferré-D’Amaré,et al.  Structural Basis of glmS Ribozyme Activation by Glucosamine-6-Phosphate , 2006, Science.

[75]  Ken J Hampel,et al.  Evidence for preorganization of the glmS ribozyme ligand binding pocket. , 2006, Biochemistry.

[76]  R. Batey,et al.  Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. , 2006, Journal of molecular biology.

[77]  T. Henkin,et al.  From Ribosome to Riboswitch: Control of Gene Expression in Bacteria by RNA Structural Rearrangements , 2006, Critical reviews in biochemistry and molecular biology.

[78]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[79]  Flipping off the riboswitch: RNA structures that control gene expression. , 2006, ACS chemical biology.

[80]  Eduardo A. Groisman,et al.  An RNA Sensor for Intracellular Mg2+ , 2006, Cell.

[81]  Shane J. Neph,et al.  Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline , 2007, Nucleic acids research.

[82]  Adam Roth,et al.  A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain , 2007, Nature Structural &Molecular Biology.

[83]  Catherine A. Wakeman,et al.  Structural features of metabolite-sensing riboswitches. , 2007, Trends in biochemical sciences.

[84]  Juan Miranda-Ríos,et al.  The THI-box riboswitch, or how RNA binds thiamin pyrophosphate. , 2007, Structure.

[85]  D. Lafontaine,et al.  Core requirements of the adenine riboswitch aptamer for ligand binding. , 2007, RNA.

[86]  S. Strobel,et al.  Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor. , 2007, Chemistry & biology.

[87]  H. Schwalbe,et al.  Structures of RNA switches: insight into molecular recognition and tertiary structure. , 2007, Angewandte Chemie.

[88]  V. Mizrahi,et al.  A Riboswitch Regulates Expression of the Coenzyme B12-Independent Methionine Synthase in Mycobacterium tuberculosis: Implications for Differential Methionine Synthase Function in Strains H37Rv and CDC1551 , 2007, Journal of bacteriology.

[89]  Harald Schwalbe,et al.  Interplay of ‘induced fit’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch , 2006, Nucleic acids research.

[90]  A. Ferré-D’Amaré,et al.  Riboswitches: small-molecule recognition by gene regulatory RNAs. , 2007, Current opinion in structural biology.

[91]  R. Micura,et al.  Ligand‐Induced Folding of the Adenosine Deaminase A‐Riboswitch and Implications on Riboswitch Translational Control , 2007, Chembiochem : a European journal of chemical biology.

[92]  Catherine A. Wakeman,et al.  Structure and Mechanism of a Metal-Sensing Regulatory RNA , 2007, Cell.

[93]  R. Breaker,et al.  Control of alternative RNA splicing and gene expression by eukaryotic riboswitches , 2007, Nature.

[94]  Renate Rieder,et al.  Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach , 2007, Nucleic acids research.

[95]  Michael Famulok,et al.  Conformational changes in the expression domain of the Escherichia coli thiM riboswitch , 2007, Nucleic acids research.

[96]  R. Batey,et al.  Ligand-dependent folding of the three-way junction in the purine riboswitch. , 2008, RNA.

[97]  R. Batey,et al.  Structure of the SAM-II riboswitch bound to S-adenosylmethionine , 2008, Nature Structural &Molecular Biology.