The Physics of Information

[1]  J. Rogers Chaos , 1876, Molecular Vibrations.

[2]  H. S. Allen The Quantum Theory , 1928, Nature.

[3]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[4]  K. E.,et al.  The Theory of Heat , 1929, Nature.

[5]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[6]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[7]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[8]  P. Rysselberghe Mathematical foundations of statistical mechanics. , 1949 .

[9]  L. Brillouin,et al.  Science and information theory , 1956 .

[10]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[11]  Zevi W. Salsburg,et al.  Elementary statistical physics , 1959 .

[12]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[13]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[14]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[15]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.

[16]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[17]  Brandon Carter,et al.  The four laws of black hole mechanics , 1973 .

[18]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[19]  S. Hawking,et al.  Black hole explosions? , 1974, Nature.

[20]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[21]  H. Akaike A new look at the statistical model identification , 1974 .

[22]  S. Hawking Particle creation by black holes , 1975 .

[23]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[24]  N. Packard,et al.  POWER SPECTRA AND MIXING PROPERTIES OF STRANGE ATTRACTORS , 1980 .

[25]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[26]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[27]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[28]  D. Dieks Communication by EPR devices , 1982 .

[29]  J. D. Farmer,et al.  Information Dimension and the Probabilistic Structure of Chaos , 1982 .

[30]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[31]  E. T. Jaynes,et al.  Papers on probability, statistics and statistical physics , 1983 .

[32]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[33]  R. Baierlein,et al.  Entropy in relation to incomplete knowledge , 1985 .

[34]  Vitalii I. Goldanskii,et al.  Quantum Chemical Reactions in the Deep Cold , 1986 .

[35]  Charles H. Bennett Demons, Engines and the Second Law , 1987 .

[36]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[37]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[38]  R. Landauer Information is physical , 1991 .

[39]  E. Jaynes The Gibbs Paradox , 1992 .

[40]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[41]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[42]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[43]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[44]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[45]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[46]  C. Vafa,et al.  Microscopic origin of the Bekenstein-Hawking entropy , 1996, hep-th/9601029.

[47]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[48]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[49]  Y. Guttmann The concept of probability in statistical physics , 1999 .

[50]  R. Omnes,et al.  Understanding Quantum Mechanics , 2020 .

[51]  Persi Diaconis,et al.  The Concept of Probability in Statistical Physics , 2000 .

[52]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[53]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[54]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[55]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[56]  Christian Beck,et al.  Dynamical Foundations of Nonextensive Statistical Mechanics , 2001, cond-mat/0105374.

[57]  J. Paz,et al.  Course 8: Environment-Induced Decoherence and the Transition from Quantum to Classical , 2000, quant-ph/0010011.

[58]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[59]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[60]  Leonard Susskind,et al.  An Introduction to Black Holes, Information And The String Theory Revolution: The Holographic Universe , 2004 .

[61]  J. Maldacena,et al.  The black hole final state , 2003, hep-th/0310281.

[62]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[63]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[64]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[65]  Mark A. Pitt,et al.  Advances in Minimum Description Length: Theory and Applications , 2005 .

[66]  Constantino Tsallis,et al.  Numerical indications of a q-generalised central limit theorem , 2005, cond-mat/0509229.

[67]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[68]  A. Leson “There is plenty of room at the Bottom”. , 2005 .

[69]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[70]  Constantino Tsallis,et al.  Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Giorgio Benedek,et al.  Nonextensive statistical mechanics : new trends , new perspectives , 2005 .

[72]  Constantino Tsallis,et al.  Special issue overview Nonextensive statistical mechanics: new trends, new perspectives , 2005 .

[73]  Almost certain escape from black holes in final state projection models. , 2004, Physical review letters.

[74]  C. Tsallis,et al.  q-generalization of symmetric alpha-stable distributions. Part II , 2006 .

[75]  Boris M. Smirnov Principles of Statistical Physics , 2006 .

[76]  Symmetric $(q,\alpha)$-Stable Distributions. Part I: First Representation , 2006, cond-mat/0606038.

[77]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[78]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[79]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[80]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[81]  Constantino Tsallis,et al.  On multivariate generalizations of the ^-central limit theorem consistent with nonextensive statistical mechanics , 2007 .

[82]  Nicolas Gisin,et al.  Quantum teleportation over the Swisscom telecommunication network , 2007 .

[83]  James P. Crutchfield,et al.  Structure or Noise? , 2007, ArXiv.

[84]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[85]  John Stache,et al.  Demons , Engines and the Second Law , 2008 .

[86]  John Geanakoplos,et al.  Power laws in economics and elsewhere , 2008 .

[87]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.