Using Lagrangian dual information to generate degree constrained spanning trees

[1]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[2]  R. Prim Shortest connection networks and some generalizations , 1957 .

[3]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[4]  Philip Wolfe,et al.  Validation of subgradient optimization , 1974, Math. Program..

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Subhash C. Narula,et al.  Degree-constrained minimum spanning tree , 1980, Comput. Oper. Res..

[7]  Bezalel Gavish,et al.  Topological design of centralized computer networks - formulations and algorithms , 1982, Networks.

[8]  Christos H. Papadimitriou,et al.  On Two Geometric Problems Related to the Traveling Salesman Problem , 1984, J. Algorithms.

[9]  Martin W. P. Savelsbergh,et al.  Edge exchanges in the degree-constrained minimum spanning tree problem , 1985, Comput. Oper. Res..

[10]  A. Volgenant A Lagrangean approach to the degree-constrained minimum spanning tree problem , 1989 .

[11]  Giovanni Rinaldi,et al.  A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems , 1991, SIAM Rev..

[12]  Clyde L. Monma,et al.  Transitions in geometric minimum spanning trees , 1991, SCG '91.

[13]  John E. Beasley,et al.  Lagrangian relaxation , 1993 .

[14]  R. Ravi,et al.  Many birds with one stone: multi-objective approximation algorithms , 1993, STOC '93.

[15]  Narsingh Deo,et al.  Minimum-Weight Degree-Constrained Spanning Tree Problem: Heuristics and Implementation on an SIMD Parallel Machine , 1996, Parallel Comput..

[16]  Samir Khuller,et al.  Low-Degree Spanning Trees of Small Weight , 1996, SIAM J. Comput..

[17]  Marimuthu Palaniswami,et al.  Comparison of Heuristic Algorithms for the Degree Constrained Minimum Spanning Tree , 1996 .

[18]  John E. Beasley Advances in Linear and Integer Programming , 1996 .

[19]  Samir Khuller,et al.  A Network-Flow Technique for Finding Low-Weight Bounded-Degree Spanning Trees , 1996, J. Algorithms.

[20]  M. Gen,et al.  A note on genetic algorithms for degree‐constrained spanning tree problems , 1997 .

[21]  G. Raidl An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[22]  Bryant A. Julstrom,et al.  A weighted coding in a genetic algorithm for the degree-constrained minimum spanning tree problem , 2000, SAC '00.

[23]  David W. Corne,et al.  A new evolutionary approach to the degree-constrained minimum spanning tree problem , 1999, IEEE Trans. Evol. Comput..

[24]  Approximation Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems , 2001, Algorithmica.

[25]  Andreas T. Ernst,et al.  Comparison of Algorithms for the Degree Constrained Minimum Spanning Tree , 2001, J. Heuristics.

[26]  L. Caccetta,et al.  A branch and cut method for the degree-constrained minimum spanning tree problem , 2001 .

[27]  Celso C. Ribeiro,et al.  Variable neighborhood search for the degree-constrained minimum spanning tree problem , 2002, Discret. Appl. Math..

[28]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[29]  Bryant A. Julstrom,et al.  Edge sets: an effective evolutionary coding of spanning trees , 2003, IEEE Trans. Evol. Comput..

[30]  Timothy M. Chan Euclidean Bounded-Degree Spanning Tree Ratios , 2003, SCG '03.