Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing. © 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (230.5590) Quantum-well, -wire and -dot devices; (230.3120) Integrated optics devices; (230.2090) Electro-optical devices; (250.7360) Waveguide modulators. References and links 1. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009). 2. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015). 3. C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016). 4. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014). 5. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011). 6. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013). 7. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001). 8. H. Wang, Y. He, Y. H. Li, Z. E. Su, B. Li, H. L. Huang, X. Ding, M. C. Chen, C. Liu, J. Qin, J. P. Li, Y. M. He, C. Schneider, M. Kamp, C. Z. Peng, S. Höfling, C. Y. Lu, and J. W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017). 9. K. R. Motes, A. Gilchrist, J. P. Dowling, and P. P. Rohde, “Scalable boson sampling with time-bin encoding using a loop-based architecture,” Phys. Rev. Lett. 113, 120501 (2014). 10. F. Lenzini, B. Haylock, J. C. Loredo, R. A. Abrahao, N. A. Zakaria, S. Kasture, I. Sagnes, A. Lemaitre, H.-P. Phan, D. V. Dao, P. Senellart, M. P. Almeida, A. G. White, and M. Lobino, “Active demultiplexing of single-photons from a solid-state source,” Laser Photonics Rev. 11, 1600297 (2017). 11. N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016). 12. G. Kiršanskė, H. Thyrrestrup, R. S. Daveau, C. L. Dreeßen, T. Pregnolato, L. Midolo, P. Tighineanu, A. Javadi, S. Stobbe, R. Schott, A. Ludwig, A. D. Wieck, S. I. Park, J. D. Song, A. V. Kuhlmann, I. Söllner, M. C. Löbl, R. J. Warburton, and P. Lodahl, “Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide,” Phys. Rev. B 96, 165306 (2017). 13. C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015). 14. I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013). 15. I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015). 16. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014). 17. M. Poot and H. X. Tang, “Broadband nanoelectromechanical phase shifting of light on a chip,” Appl. Phys. Lett. 104, 061101 (2014). 18. J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014). 19. H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable Lithium-Niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014). 20. P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Generation and active manipulation of qubits in LiNbO3-based integrated circuits,” https://arxiv.org/abs/1704.03769. 21. K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015). 22. J. C. Campbell, F. A. Blum, D. W. Shaw, and K. L. Lawley, “GaAs electro-optic directional-coupler switch,” Appl. Phys. Lett. 27(4), 202–205 (1975). 23. A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97, 031104 (2010). 24. S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7(4), 329–334 (2013). 25. R. Syms and J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992). 26. S. S. Lee, R. V. Ramaswamy, and V. S. Sundaram, “Analysis and design of high-speed high-efficiency GaAs-AlGaAs double-heterostructure waveguide phase modulator,” IEEE J. Quantum Elect. 27(3), 726–736 (1991). 27. C. Berseth, C. Wuethrich, and F. K. Reinhart, “The electro-optic coefficients of GaAs: Measurements at 1.32 and 1.52 μm and study of their dispersion between 0.9 and 10 μm,” J. Appl. Phys. 71(6), 2821–2825 (1992). 28. H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for nand p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975). 29. G. E. Stillman, C. M. Wolfe, C. O. Bozler, and J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28(9), 544–546 (1976). 30. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). 31. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995). 32. G. Simpson, “A generalized n-port cascade connection,” in Microwave Symposium Digest, 1981 IEEE MTT-S International, (IEEE, 1981), pp. 507–509. 33. L. Midolo, T. Pregnolato, G. Kiršanskė, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” Nanotechnology 26, 484002 (2015). 34. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010). 35. F. Pagliano, Y. Cho, T. Xia, F. v. Otten, R. Johne, and A. Fiore, “Dynamically controlling the emission of single excitons in photonic crystal cavities,” Nat. Commun. 5, 5786 (2014). 36. D. Parrain, C. Baker, G. Wang, B. Guha, E. Gil Santos, A. Lemaitre, P. Senellart, G. Leo, S. Ducci, and I. Favero, “Origin of optical losses in gallium arsenide disk whispering gallery resonators,” Opt. Express 23(15), 19656–19672 (2015). 37. C. P. Michael, K. Srinivasan, T. J. Johnson, and O. Painter, “Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007). 38. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). 39. L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).

[1]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[2]  S. Stobbe,et al.  Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics , 2015, Nanotechnology.

[3]  M. S. Skolnick,et al.  Optical control of the emission direction of a quantum dot , 2013 .

[4]  Christian Schneider,et al.  Ultrafast optical spin echo in a single quantum dot , 2010 .

[5]  Jin Dong Song,et al.  Deterministic photon-emitter coupling in chiral photonic circuits. , 2014, Nature nanotechnology.

[6]  Christian Schneider,et al.  High-efficiency multiphoton boson sampling , 2017, Nature Photonics.

[7]  J. Song,et al.  Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. , 2014, Physical review letters.

[8]  G.R. Simpson A Generalized n-Port Cascade Connection , 1981, 1981 IEEE MTT-S International Microwave Symposium Digest.

[10]  C. M. Natarajan,et al.  Gallium arsenide (GaAs) quantum photonic waveguide circuits , 2014, 1403.2635.

[11]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[12]  Raj B Patel,et al.  Giant Stark effect in the emission of single semiconductor quantum dots , 2010, 1011.2436.

[13]  P. Xu,et al.  On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. , 2014, Physical review letters.

[14]  I. Sagnes,et al.  Active demultiplexing of single photons from a solid‐state source , 2016, 1611.02294.

[15]  Thomas L. Reinecke,et al.  Quantum control of a spin qubit coupled to a photonic crystal cavity , 2013 .

[16]  Kartik Srinivasan,et al.  Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission , 2015, Nature Communications.

[17]  O. Painter,et al.  Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities , 2007 .

[18]  H. Tang,et al.  Broadband nanoelectromechanical phase shifting of light on a chip , 2013, 1312.2454.

[19]  Andreas D. Wieck,et al.  Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide , 2017, 1701.08131.

[20]  Ramu V. Ramaswamy,et al.  Analysis and design of high-speed high-efficiency GaAs-AlGaAs double-heterostructure waveguide phase modulator , 1991 .

[21]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[22]  G. E. Stillman,et al.  Electroabsorption in GaAs and its application to waveguide detectors and modulators , 1976 .

[23]  A. Fiore,et al.  Dynamically controlling the emission of single excitons in photonic crystal cavities , 2014, Nature Communications.

[24]  A. M. Fox,et al.  On-chip electrically controlled routing of photons from a single quantum dot , 2015 .

[25]  Volker J. Sorger,et al.  Review and perspective on ultrafast wavelength‐size electro‐optic modulators , 2015 .

[26]  H. C. Casey,et al.  Concentration dependence of the absorption coefficient for n− and p−type GaAs between 1.3 and 1.6 eV , 1975 .

[27]  J. P. Sprengers,et al.  Waveguide superconducting single-photon detectors for integrated quantum photonic circuits , 2011, 1108.5107.

[28]  Christine Silberhorn,et al.  Generation and active manipulation of qubits in $LiNbO_3$-based integrated circuits , 2017 .

[29]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[30]  J. Rarity,et al.  Photonic quantum technologies , 2013 .

[31]  Peter P Rohde,et al.  Scalable boson sampling with time-bin encoding using a loop-based architecture. , 2014, Physical review letters.

[32]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[33]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[34]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[35]  Joe C. Campbell,et al.  GaAs electro‐optic directional‐coupler switch , 1975 .

[36]  F. K. Reinhart,et al.  The electro‐optic coefficients of GaAs: Measurements at 1.32 and 1.52 μm and study of their dispersion between 0.9 and 10 μm , 1992 .