Mechanical properties of additive manufactured titanium (Ti–6Al–4V) blocks deposited by a solid-state laser and wire

Abstract In this paper, the mechanical properties and chemical composition of additive manufactured Ti–6Al–4V blocks are investigated and compared to plate material and aerospace specifications. Blocks (seven beads wide, seven layers high, 165 mm long) were deposited using a 3.5 kW Nd:YAG laser and Ti–6Al–4V wire. Two different sets of process parameters are used and three different conditions (as-built, 600 °C/4 h, 1200 °C/2 h) of the deposit are investigated. The particular impurity levels of the blocks are considerably below those tolerated according to aerospace material specifications (AMS 4911L). Static tensile samples are extracted from the blocks in the deposition direction and punch samples are extracted in the building direction. The experiments show that as-deposited Ti–6Al–4V can achieve strength and ductility properties that fulfill aerospace specifications of the wrought Ti–6Al–4V material (AMS 4928). The 600 °C/4 h heat treatment leads to a significantly higher strength in the deposition direction, but can also decrease ductility. The 1200 °C/2 h treatment tends to decrease the alloy’s strength.

[1]  S. L. Semiatin,et al.  The laser additive manufacture of Ti-6Al-4V , 2001 .

[2]  N. Järvstråt,et al.  Modelling Ti-6Al-4V microstructure by evolution laws implemented as finite element subroutines: : Application to TIG metal deposition , 2008 .

[3]  E. Collings,et al.  Materials Properties Handbook: Titanium Alloys , 1994 .

[4]  I. R. Pashby,et al.  Deposition of Ti–6Al–4V using a high power diode laser and wire, Part II: Investigation on the mechanical properties , 2008 .

[5]  C. Leyens,et al.  Titanium and titanium alloys : fundamentals and applications , 2005 .

[6]  B. Baufeld,et al.  Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: Microstructure and mechanical properties , 2010 .

[7]  C. Charles Modelling microstructure evolution of weld deposited Ti-6Al-4V , 2008 .

[8]  S. L. Semiatin,et al.  Microstructure and texture evolution during solidification processing of Ti–6Al–4V , 2003 .

[9]  Joseph R. Davis Properties and selection : nonferrous alloys and special-purpose materials , 1990 .

[10]  I. R. Pashby,et al.  Deposition of Ti–6Al–4V using a high power diode laser and wire, Part I: Investigation on the process characteristics , 2008 .

[11]  S. Zec,et al.  The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy , 2006 .

[12]  Karen M. Taminger,et al.  Electron Beam Freeform Fabrication in the Space Environment , 2007 .

[13]  Omer Van der Biest,et al.  Texture and Crystal Orientation in Ti-6Al-4V Builds Fabricated by Shaped Metal Deposition , 2010 .

[14]  R. Poprawe,et al.  Qualifizieren des Laserstrahl-Auftragschweißens von BLISKs aus Nickel- und Titanbasislegierungen , 2006 .

[15]  F. F. Schmidt,et al.  Heat treatment of titanium and titanium alloys , 1966 .

[16]  S. Kelly Thermal and Microstructure Modeling of Metal Deposition Processes with Application to Ti-6Al-4V , 2004 .

[17]  W. D. Callister,et al.  Fundamentals of Materials Science and Engineering , 2004 .

[18]  G. Lutjering,et al.  Titanium: Science and Technology , 1985 .

[19]  Chun‐Sing Lee,et al.  Quasi-static and dynamic deformation behavior of Ti–6Al–4V alloy containing fine α2-Ti3Al precipitates , 2004 .

[20]  Manfred Peters,et al.  Titan und Titanlegierungen , 2002 .

[21]  Omer Van der Biest,et al.  Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition , 2011 .

[22]  D. Harwig,et al.  Advances in oxygen equivalent equations for predicting the properties of titanium welds , 2001 .

[23]  Christoph Leyens,et al.  Titanium Alloys for Aerospace Applications , 2003 .

[24]  F. Klocke,et al.  Research on Layer Manufacturing Techniques at Fraunhofer , 2004 .

[25]  S. Kelly,et al.  Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization , 2004 .