Interacting measure branching processes. Some bounds for the support

We prove a tightness result for a sequence of interacting branching-diffusion processes. The limit points are continuous measure-valued processes and satisfy a martingale property. We state that they are solutions of a generalized stochastic differential equation. Then we study some support properties for examples of interacting measure branching processes.

[1]  J. Lepeltier,et al.  Représentation des processus ponctuels multivariés à l'aide d'un processus de Poisson , 1977 .

[2]  Fluctuations of spatial branching processes with mean-field interaction , 1991, Advances in Applied Probability.

[3]  U. Zähle Random Fractals Generated by Random Cutouts , 1984 .

[4]  S. Méléard,et al.  Discontinuous Measure-Valued Branching Processes and Generalized Stochastic Equations , 1991 .

[5]  M. Métivier Weak convergence of measure valued processes using sobolev-imbedding techniques , 1987 .

[6]  Weian Zheng,et al.  Tightness criteria for laws of semimartingales , 1984 .

[7]  Brigitte Chauvin,et al.  A stochastic simulation for solving scalar reaction-diffusion equations , 1990 .

[8]  Measure-valued branching diffusions with spatial interactions , 1992 .

[9]  S. Roelly-Coppoletta A criterion of convergence of measure-valued processes: Application to measure branching processes , 1986 .

[10]  The Carrying Dimension of a Stochastic Measure Diffusion , 1979 .

[11]  Shinzo Watanabe,et al.  A limit theorem of branching processes and continuous state branching processes , 1968 .

[12]  The Fractal Character of Localizable Measure‐Valued Processes, III. Fractal Carrying Sets of Branching Diffusions , 1988 .

[13]  E. Dynkin Branching particle systems and superprocesses , 1991 .

[14]  Steven N. Evans,et al.  Measure-Valued Branching Diffusions with Singular Interactions , 1994, Canadian Journal of Mathematics.

[15]  E. Perkins A space-time property of a class of measure-valued branching diffusions , 1988 .

[16]  Construction et Propriétés de Martingales des Branchements Spatiaux Interactifs@@@Construction et Proprietes de Martingales des Branchements Spatiaux Interactifs , 1990 .

[17]  David Aldous,et al.  Stopping Times and Tightness. II , 1978 .

[18]  N. El Karoui,et al.  Martingale measures and stochastic calculus , 1990 .

[19]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .