Implementation of PT symmetric devices using plasmonics: principle and applications.

The so-called PT symmetric devices, which feature ε((-x)) = ε((x))* associated with parity-time symmetry, incorporate both gain and loss and can present a singular eigenvalue behaviour around a critical transition point. The scheme, typically based on co-directional coupled waveguides, is here transposed to the case of variable gain on one arm with fixed losses on the other arm. In this configuration, the scheme exploits the full potential of plasmonics by making a beneficial use of their losses to attain a critical regime that makes switching possible with much lowered gain excursions. Practical implementations are discussed based on existing attempts to elaborate coupled waveguide in plasmonics, and based also on the recently proposed hybrid plasmonics waveguide structure with a small low-index gap, the PIROW (Plasmonic Inverse-Rib Optical Waveguide).

[1]  L. D. Negro,et al.  Applicability conditions and experimental analysis of the variable stripe length method for gain measurements , 2004 .

[2]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[3]  Harald Giessen,et al.  The dynamics of gain-narrowing in a ladder-type π-conjugated polymer , 1999 .

[4]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[5]  R. Salas-Montiel,et al.  Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. , 2010, Nano letters.

[6]  S. Bozhevolnyi,et al.  Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides , 2010, Journal of Lightwave Technology.

[7]  B. Offrein,et al.  Enhanced feedback in organic photonic-crystal lasers , 2005 .

[8]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[9]  Salvatore Stagira,et al.  An ultrafast spectroscopy study of stimulated emission in poly(9,9-dioctylfluorene) films and microcavities , 1999 .

[10]  Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides , 2011 .

[11]  R. Sastre,et al.  Amplified spontaneous emission and optical gain measurements from pyrromethene 567--doped polymer waveguides and quasi-waveguides. , 2008, Optics express.

[12]  University of Central Florida,et al.  Unidirectional nonlinear PT-symmetric optical structures , 2010, 1005.5189.

[13]  S. Bozhevolnyi,et al.  Long-range surface plasmon polariton nanowire waveguides for device applications. , 2006, Optics express.

[14]  José Azaña,et al.  Nonreciprocal waveguide Bragg gratings. , 2005, Optics express.

[15]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[16]  David R. Smith,et al.  Directional coupling between dielectric and long-range plasmon waveguides , 2009 .

[17]  Shachar Klaiman,et al.  Visualization of branch points in PT-symmetric waveguides. , 2008, Physical review letters.

[18]  P. Berini Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures , 2000 .

[19]  Alan J. Heeger,et al.  Amplified spontaneous emission from photopumped films of a conjugated polymer , 1998 .

[20]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[21]  Sergey Eyderman,et al.  Waveguide structures with antisymmetric gain/loss profile. , 2010, Optics express.

[22]  H. Benisty,et al.  Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition , 2010 .

[23]  A. Kristensen,et al.  Thin film Ag superlens towards lab-on-a-chip integration. , 2009, Optics express.

[24]  R. F. Leheny,et al.  Direct Determination of Optical Gain in Semiconductor Crystals , 1971 .

[25]  V. Podolskiy,et al.  Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. , 2007, Optics express.

[26]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[27]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[28]  A. Siove,et al.  Highly efficient, diffraction-limited laser emission from a vertical external-cavity surface-emitting organic laser. , 2010, Optics letters.

[29]  Alexandra Boltasseva,et al.  Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. , 2008, Optics express.

[30]  K. Meerholz,et al.  Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer , 2010 .

[31]  A. Siove,et al.  Gain measurement and low-threshold laser operation in non-doped thin films made of a small-molecule organic red-emitter , 2009, 0906.5155.

[32]  Tsampikos Kottos,et al.  Optical physics: Broken symmetry makes light work , 2010 .

[33]  Yeshaiahu Fainman,et al.  Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. , 2004, Optics express.

[34]  Jonathan Grandidier,et al.  Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy , 2008 .

[35]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[36]  L. Cederbaum,et al.  Non-Hermitian Hamiltonians with space-time symmetry , 2008 .

[37]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[38]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[39]  S. Forrest,et al.  Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation , 2009 .

[40]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[41]  M. Kulishov,et al.  Trapping light in a ring resonator using a grating-assisted coupler with asymmetric transmission. , 2005, Optics express.