Fundamentals of Holographic Sensing

Optical devices that reversibly respond to external stimuli can provide fast, quantitative, visual colorimetric readouts in real-time. They may consist of bioactive recognition elements that can transmit the signal through a transducer embedded within the system. Responsive photonic structures may have applications in chemical, biological and physical sensors for medical diagnostics, veterinary screening, environmental monitoring, pharmaceutical bioassays, optomechanical sensing and security applications. This chapter provides an overview of the fabrication of optical devices, and highlights holography as a practical approach for the rapid construction of optical sensors that operate in the visible spectrum and near infrared. It begins with describing the fundamentals of holography and origins of holographic sensors. The chapter also explains the principle of operation of these devices and discusses the design parameters that affect the readouts. The principles of laser light interference during sensor fabrication and photochemical patterning are discussed. Furthermore, computational readout simulations of a generic holographic sensor through a finite element method are demonstrated. Studied design parameters include optical effects due to lattice spacing, nanoparticle (NP) size and concentration, number of stacks, their distribution, and lattice deficiencies within the sensor. Computational simulations allow designing holographic sensors with predictive optical characteristics.

[1]  Paul V. Braun,et al.  Embedded cavities and waveguides in three-dimensional silicon photonic crystals , 2008 .

[2]  A. Einstein Zur Quantentheorie der Strahlung , 1916 .

[3]  S. Noda,et al.  Full three-dimensional photonic bandgap crystals at near-infrared wavelengths , 2000, Science.

[4]  E. Leith,et al.  Reconstructed Wavefronts and Communication Theory , 1962 .

[5]  A. Yetisen,et al.  Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications. , 2014, Chemical reviews.

[6]  Yunuen Montelongo,et al.  Plasmonic nanoparticle scattering for color holograms , 2014, Proceedings of the National Academy of Sciences.

[7]  Ali Kemal Yetisen,et al.  Paper-based microfluidic point-of-care diagnostic devices. , 2013, Lab on a chip.

[8]  Ali K. Yetisen,et al.  A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests , 2014 .

[9]  Stephen H. Foulger,et al.  Electric‐Field‐Induced Rejection‐Wavelength Tuning of Photonic‐Bandgap Composites , 2005 .

[10]  Jeremy J. Baumberg,et al.  Light‐Directed Writing of Chemically Tunable Narrow‐Band Holographic Sensors , 2014 .

[11]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[12]  Zhongze Gu,et al.  Photonic Crystals in Bioassays , 2010 .

[13]  O. Velev,et al.  Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals , 2003 .

[14]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[15]  Younan Xia,et al.  Assembly of monodispersed spherical colloids into one-dimensional aggregates characterized by well-controlled structures and lengths , 2001 .

[16]  Yasuhiko Arakawa,et al.  Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity , 2008 .

[17]  M. Okano,et al.  Direct creation of three-dimensional photonic crystals by a top-down approach. , 2009, Nature materials.

[18]  C. Lowe,et al.  A hologram biosensor for proteases , 1996 .

[19]  Arjun G. Yodh,et al.  Switchable Bragg diffraction from liquid crystal in colloid-templated structures , 2002 .

[20]  J. Galisteo‐López,et al.  Self‐Assembled Photonic Structures , 2011, Advanced materials.

[21]  Heinrich Hertz,et al.  Electric Waves: Being Researches on the Propagation of Electric Action with Finite Velocity Through Space , 1962 .

[22]  S. L. Ng,et al.  Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3 , 2001 .

[23]  G. Ozin,et al.  Photochemically and thermally tunable planar defects in colloidal photonic crystals. , 2005, Journal of the American Chemical Society.

[24]  Ali K. Yetisen,et al.  Computational modelling and characterisation of nanoparticle-based tuneable photonic crystal sensors , 2014 .

[25]  Sanford A. Asher,et al.  Photoswitchable Spirobenzopyran‐ Based Photochemically Controlled Photonic Crystals , 2005 .

[26]  M C Emre Simsekler,et al.  The regulation of mobile medical applications. , 2014, Lab on a chip.

[27]  Kurt Busch,et al.  Tunable two-dimensional photonic crystals using liquid crystal infiltration , 2000 .

[28]  Ali K. Yetisen,et al.  Pulsed laser writing of holographic nanosensors , 2014 .

[29]  F. Topuz,et al.  Hydrogels in sensing applications , 2012 .

[30]  Haider Butt,et al.  Reusable, robust, and accurate laser-generated photonic nanosensor. , 2014, Nano letters.

[31]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[32]  J. Maxwell A Dynamical Theory of the Electromagnetic Field , .

[33]  Bradley K. Smith,et al.  A three-dimensional photonic crystal operating at infrared wavelengths , 1998, Nature.

[34]  Younan Xia,et al.  Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids. , 2005, Angewandte Chemie.

[35]  Ali K. Yetisen,et al.  Enhanced reflection from inverse tapered nanocone arrays , 2014 .

[36]  Stephen A. Benton,et al.  Practical Holography VIII , 1989 .

[37]  Ali K. Yetisen,et al.  Computational modelling of a graphene Fresnel lens on different substrates , 2014 .

[38]  Paul A. Borsa,et al.  Light Amplification by Stimulated Emission of Radiation , 2009 .

[39]  Vincent Toal,et al.  Research on Holographic Sensors and Novel Photopolymers at the Centre for Industrial and Engineering Optics , 2013 .

[40]  Ali K. Yetisen,et al.  Applications of Paper-Based Diagnostics , 2015 .

[41]  Bing Yu,et al.  Imitation of variable structural color in Paracheirodon innesi using colloidal crystal films. , 2011, Optics express.

[42]  Reiner Guether Berlin scientist and educator Wilhelm Zenker (1829-1899) and the principle of color selection , 1999, Optical Systems Design.

[43]  I. Naydenova,et al.  Holographic Humidity Sensors , 2011 .

[44]  Akira Fujishima,et al.  Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles , 2000 .

[45]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[46]  Pierre Wiltzius,et al.  Humidity-sensing inverse opal hydrogels. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[47]  D. Gabor A New Microscopic Principle , 1948, Nature.

[48]  Kurt Busch,et al.  Silicon‐Based Photonic Crystals , 2001 .

[49]  T. Kubota Cross-sectional view of Lippman hologram gratings. , 1988, Applied optics.

[50]  R. Lakes,et al.  Color control in reflection holograms by humidity. , 1991, Applied optics.

[51]  Vincent Toal Introduction to Holography , 2011 .

[52]  O. Wiener,et al.  Stehende Lichtwellen und die Schwingungsrichtung polarisirten Lichtes , 1890 .

[53]  P. Hariharan Basics of Interferometry , 2006 .

[54]  C. Lowe,et al.  Holographic sensor for water in solvents. , 1996, Analytical chemistry.

[55]  E. Yablonovitch Photonic crystals: semiconductors of light. , 2001, Scientific American.

[56]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[57]  Y. Fink,et al.  One-dimensionally periodic dielectric reflectors from self-assembled block copolymer-homopolymer blends , 1999 .

[58]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[59]  Tetsuo Tsutsui,et al.  Tuning the Optical Properties of Inverse Opal Photonic Crystals by Deformation , 2002 .

[60]  N. Clark,et al.  Electro-optic Behavior of Liquid-Crystal-Filled Silica Opal Photonic Crystals , 2001 .

[61]  G. Lippmann,et al.  Sur la théorie de la photographie des couleurs simples et composées par la méthode interférentielle , 2022 .

[62]  Zhongze Gu,et al.  Bio-inspired variable structural color materials. , 2012, Chemical Society reviews.

[63]  Ali K Yetisen,et al.  Commercialization of microfluidic devices. , 2014, Trends in biotechnology.

[64]  Seok Hyun Yun,et al.  Contact Lens Sensors in Ocular Diagnostics , 2015, Advanced healthcare materials.

[65]  D. Norris,et al.  Photonic crystals. A view of the future. , 2007, Nature materials.

[66]  William B. Zimmerman,et al.  Multiphysics Modeling with Finite Element Methods , 2006 .

[67]  F. Caruso,et al.  Nano- and Microengineering: 3-D Colloidal Photonic Crystals Prepared from Sub-μm-sized Polystyrene Latex Spheres Pre-Coated with Luminescent Polyelectrolyte/Nanocrystal Shells , 2000 .

[68]  M. Land,et al.  Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus , 2003, Journal of Experimental Biology.

[69]  Vincent Toal,et al.  Characterisation of the Humidity and Temperature Responses of a Reflection Hologram Recorded in Acrylamide-based Photopolymer , 2009 .

[70]  Hans I. Bjelkhagen,et al.  Silver-Halide Recording Materials: for Holography and Their Processing , 1993 .

[71]  S. Minko,et al.  Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers , 2012 .

[72]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[73]  Parameswaran Hariharan Pseudocolour images with volume reflection holograms , 1980 .

[74]  Osamu Sato,et al.  Photochemically Tunable Colloidal Crystals , 2000 .

[75]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[76]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[77]  Francesco Scotognella,et al.  Stacking the Nanochemistry Deck: Structural and Compositional Diversity in One‐Dimensional Photonic Crystals , 2009 .

[78]  M. McFall-Ngai,et al.  Reflectins: The Unusual Proteins of Squid Reflective Tissues , 2004, Science.

[79]  Tong Zhang,et al.  Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. , 2011, ACS nano.

[80]  W. L. Bragg,et al.  2 – The Diffraction of Short Electromagnetic Waves by a Crystal* , 1913 .

[81]  Stephen A. Benton,et al.  In-Situ Swelling For Holographic Color Control , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[82]  Ali K. Yetisen,et al.  A microsystem-based assay for studying pollen tube guidance in plant reproduction , 2011 .

[83]  Ali K Yetisen,et al.  Patent protection and licensing in microfluidics. , 2014, Lab on a chip.

[84]  Roger Bradley Millington,et al.  A diffusion method for making silver bromide based holographic recording material , 1999 .

[85]  D. Gabor Microscopy by reconstructed wave-fronts , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[86]  F. Schacher,et al.  Functional block copolymers: nanostructured materials with emerging applications. , 2012, Angewandte Chemie.

[87]  Ali K. Yetisen,et al.  Printable Surface Holograms via Laser Ablation , 2014 .

[88]  X. H. Liu,et al.  Structural color change in longhorn beetles Tmesisternus isabellae. , 2009, Optics express.

[89]  V. A. Postnikov,et al.  Holographic Sensors for Detection of Components in Water Solutions , 2013 .

[90]  Julie L Walker,et al.  In Situ Color Control for Reflection Holography , 1987 .

[91]  M. Wanke,et al.  Laser Rapid Prototyping of Photonic Band-Gap Microstructures , 1997, Science.

[92]  T. Krauss Cavities without leaks , 2003, Nature materials.

[93]  J. Aizenberg,et al.  Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers , 2013, Advanced materials.

[94]  R. Baughman,et al.  Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment. , 2001, Physical review letters.

[95]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[96]  James Clerk Maxwell,et al.  VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[97]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[98]  Susumu Noda,et al.  Manipulation of photons at the surface of three-dimensional photonic crystals , 2009, Nature.