Accelerating Diusions and Related Problems

[1]  Goodman,et al.  Multigrid Monte Carlo method. Conceptual foundations. , 1989, Physical review. D, Particles and fields.

[2]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[3]  On some quadratic perturbation of Ornstein-Uhlenbeck processes. , 2000 .

[4]  Richard Bellman,et al.  Methods Of Nonlinear Analysis , 1970 .

[5]  Kenneth R. Driessel,et al.  The projected gradient methods for least squares matrix approximations with spectral constraints , 1990 .

[6]  W. Stannat (Nonsymmetric) Dirichlet operators on $L^1$ : existence, uniqueness and associated Markov processes , 1999 .

[7]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[8]  C. Hwang,et al.  Convergence rates of the Gibbs sampler, the Metropolis algorithm and other single-site updating dynamics , 1993 .

[9]  C I Chou,et al.  Monte Carlo dynamics in global optimization. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  K. Athreya,et al.  ON THE CONVERGENCE OF THE MARKOV CHAIN SIMULATION METHOD , 1996 .

[11]  M. Chu Numerical methods for inverse singular value problems3 , 1992 .

[12]  Moody T. Chu,et al.  Constructing a Hermitian Matrix from Its Diagonal Entries and Eigenvalues , 1995, SIAM J. Matrix Anal. Appl..

[13]  Tosio Kato Perturbation theory for linear operators , 1966 .

[14]  Mu-Fa Chen,et al.  From Markov Chains to Non-Equilibrium Particle Systems , 1992 .