Bioinspired dynamic inclination measurement using inertial sensors

Biologically, the vestibular feedback is critical to the ability of human body to balance in different conditions. This balancing ability inspires analysis of the reference equilibrium position in dynamic environments. The research proposes and experimentally validates the concept of equilibrium for the human body modeled as an inverted pendulum, which is instrumental in explaining why we align the body along the surface normal when standing on a surface but not on an incline, and tend to lean backward or forward on non-static surfaces e.g. accelerating or decelerating bus. This equilibrium position--the dynamic equilibrium axis--is dependent only on the acceleration of surface of contact (e.g. gravity) and acts as the reference to the orientation measurements. The research also draws design inspiration from the two human ears--symmetry and plurality of inertial sensors. The vestibular dynamic inclinometer and planar vestibular dynamic inclinometer consist of multiple (two or four) symmetrically placed accelerometers and a gyroscope. The sensors measure the angular acceleration and absolute orientation, not the change in orientation, from the reference equilibrium position and are successful in separating gravity from motion for objects moving on ground. The measurement algorithm is an analytical solution that is not time-recursive, independent of body dynamics and devoid of integration errors. The experimental results for the two sensor combinations validate the theoretically (kinematics) derived analytical solution of the measurement algorithm.

[1]  A. Zorn,et al.  A merging of system technologies: all-accelerometer inertial navigation and gravity gradiometry , 2002, 2002 IEEE Position Location and Navigation Symposium (IEEE Cat. No.02CH37284).

[2]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[3]  Alfred R. Schuler,et al.  Measuring Rotational Motion with Linear Accelerometers , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[4]  V. J. Wilson,et al.  Mammalian Vestibular Physiology , 1979, Springer US.

[5]  Fredrik Gustafsson,et al.  Determining the initial states in forward-backward filtering , 1996, IEEE Trans. Signal Process..

[6]  J. Bortz A New Mathematical Formulation for Strapdown Inertial Navigation , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Sou-Chen Lee,et al.  Gyroscope Free Strapdown Inertial Measurement Unit by Six Linear Accelerometers , 1994 .

[8]  Yeon Fuh Jiang,et al.  Improved strapdown coning algorithms , 1992 .

[9]  R. Mayne,et al.  A Systems Concept of the Vestibular Organs , 1974 .

[10]  A. E. Kurashvili,et al.  The Physiology of the Vestibular Apparatus , 1931, Nature.

[11]  Peter H. Veltink,et al.  Measuring orientation of human body segments using miniature gyroscopes and accelerometers , 2005, Medical and Biological Engineering and Computing.

[12]  Vishesh Vikas,et al.  Robot Inclination Estimation using Vestibular Dynamic Inclinometer , 2010 .

[13]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[14]  T. Brandt Vertigo: Its Multisensory Syndromes , 1991, Clinical Medicine and the Nervous System.

[15]  Nagesh Yadav,et al.  Two stage Kalman filtering for position estimation using dual Inertial Measurement Units , 2011, 2011 IEEE SENSORS Proceedings.

[16]  Richard D. Rabbitt,et al.  Biomechanics of the Semicircular Canals and Otolith Organs , 2004 .

[17]  Carl D. Crane,et al.  Kinematic Analysis of Robot Manipulators , 1998 .

[18]  Vishesh Vikas,et al.  Inclination Parameter Estimation for Manipulator and Humanoid Robot Links , 2011 .

[19]  A. D. King,et al.  Inertial Navigation - Forty Years of Evolution , 1998 .

[20]  Hugh F. Durrant-Whyte,et al.  Initial calibration and alignment of low-cost inertial navigation units for land vehicle applications , 1999, J. Field Robotics.

[21]  R. S. Creed,et al.  The physiology of the vestibular apparatus , 1930 .

[22]  Marie-José Aldon,et al.  Mobile robot attitude estimation by fusion of inertial data , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[23]  J. Saniie,et al.  Estimation of 3D angular motion using gyroscopes and linear accelerometers , 1991 .

[24]  Thomas Mergner,et al.  Vestibular humanoid postural control , 2009, Journal of Physiology-Paris.

[25]  V. Krishnan Measurement of angular velocity and linear acceleration using linear accelerometers , 1965 .

[26]  A. Hudspeth,et al.  The physics of hearing: fluid mechanics and the active process of the inner ear , 2014, Reports on progress in physics. Physical Society.

[27]  M. B. Ignagni,et al.  Optimal strapdown attitude integration algorithms , 1990 .

[28]  B. Ravani,et al.  Design and Implementation of a Mechatronic, All-Accelerometer Inertial Measurement Unit , 2007, IEEE/ASME Transactions on Mechatronics.

[29]  Eric Foxlin,et al.  Inertial head-tracker sensor fusion by a complementary separate-bias Kalman filter , 1996, Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium.

[30]  Federico Pedersini,et al.  Autocalibration of MEMS Accelerometers , 2009, IEEE Transactions on Instrumentation and Measurement.

[31]  Vishesh Vikas,et al.  Measurement of Robot Link Joint Parameters Using Multiple Accelerometers and Gyroscope , 2013 .

[32]  J. T. Gillis,et al.  Estimation of 3-D Angular Motion Using Gyroscopes and Linear Accelerometers , 1991 .

[33]  Seppo J. Ovaska,et al.  Angular acceleration measurement: a review , 1998, IEEE Trans. Instrum. Meas..

[34]  A. King,et al.  Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers , 1975 .

[35]  Jorge Angeles Computation of Rigid-Body Angular Acceleration From Point-Acceleration Measurements , 1987 .