Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials

All-dielectric metamaterials have emerged as a promising platform for low-loss and highly efficient terahertz devices. However, existing fabrication methods have difficulty in achieving a good balance between precision and cost. Here, inspired by the nano-template-assisted self-assembly method, we develop a micro-template-assisted self-assembly (MTAS) method to prepare large-scale, high-precision, and flexible ceramic microsphere all-dielectric metamaterials with an area exceeding 900  cm×900  cm. Free from organic solvents, vacuum, and complex equipment, the MTAS method ensures low-cost and environmentally friendly fabrication. The ceramic microsphere resonators can be readily assembled into nearly arbitrary arrangements and complex aggregates, such as dimers, trimers, quadrumers, and chains. Finally, using the heat-shrinkable substrate and dipole coupling effect, a broadband reflector with a bandwidth of 0.15 THz and a reflection of up to 95% is demonstrated. This work provides a versatile and powerful platform for terahertz all-dielectric metamaterials, with potential to be applied in a wide variety of high-efficiency terahertz devices.

[1]  Patrick Mounaix,et al.  Tunable terahertz metamaterials with negative permeability , 2009 .

[2]  Zhen Tian,et al.  Broadband Terahertz Wave Deflection Based on C‐shape Complex Metamaterials with Phase Discontinuities , 2013, Advanced materials.

[3]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[4]  Martin Koch,et al.  Sharp Fano resonances in THz metamaterials. , 2011, Optics express.

[5]  Viktoriia E. Babicheva,et al.  Nonradiating Silicon Nanoantenna Metasurfaces as Narrowband Absorbers , 2018 .

[6]  Yunhui Huang,et al.  Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density , 2018, Nano Energy.

[7]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[8]  Stefan A. Maier,et al.  Electric and Magnetic Field Enhancement with Ultralow Heat Radiation Dielectric Nanoantennas: Considerations for Surface-Enhanced Spectroscopies , 2014 .

[9]  Igal Brener,et al.  Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. , 2014, Nano letters.

[10]  Brian A. Slovick,et al.  Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector , 2014 .

[11]  Wei Li,et al.  Large-Scale All-Dielectric Metamaterial Perfect Reflectors , 2015 .

[12]  M. Lei,et al.  Recent Advances in the Functional 2D Photonic and Optoelectronic Devices , 2018, Advanced Optical Materials.

[13]  Chunmei Ouyang,et al.  Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude , 2014, Advanced materials.

[14]  Mohsen Rahmani,et al.  Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion , 2015, Nature Communications.

[15]  Yuanmu Yang,et al.  All-dielectric metasurface analogue of electromagnetically induced transparency , 2014, Nature Communications.

[16]  Federico Capasso,et al.  Plasmonic mode engineering with templated self-assembled nanoclusters. , 2012, Nano letters.

[17]  J. Stewart Aitchison,et al.  Coupled magnetic dipole resonances in sub-wavelength dielectric particle clusters , 2010 .

[18]  Ji Zhou,et al.  Switchable Complementary Diamond-Ring-Shaped Metasurface for Radome Application , 2018, IEEE Antennas and Wireless Propagation Letters.

[19]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[20]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[21]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[22]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[23]  M. Sinclair,et al.  Realizing optical magnetism from dielectric metamaterials. , 2012, Physical review letters.

[24]  Y. Kivshar,et al.  Multifold Enhancement of Third-Harmonic Generation in Dielectric Nanoparticles Driven by Magnetic Fano Resonances. , 2016, Nano letters.

[25]  Derek Abbott,et al.  Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas , 2015, Advanced materials.

[26]  F. Lederer,et al.  Analogue of electromagnetically induced transparency in a terahertz metamaterial , 2009, 0907.1937.

[27]  Jingbo Sun,et al.  High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode. , 2015, Nano letters.

[28]  Yuping Yang,et al.  Terahertz magnetic and electric Mie resonances of an all-dielectric one-dimensional grating and their sensing capability , 2015, 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[29]  G. Yang,et al.  Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers , 2015, Nature Communications.

[30]  Yong-hee Lee,et al.  A terahertz metamaterial with unnaturally high refractive index , 2011, Nature.

[31]  Ci-Ling Pan,et al.  Fabrication of Terahertz Planar Metamaterials Using a Super-Fine Ink-Jet Printer , 2009 .

[32]  J. Valentine,et al.  Realization of an all-dielectric zero-index optical metamaterial , 2013, Nature Photonics.

[33]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[34]  Wang Jianfeng,et al.  Strong-Field-Enhanced Spectroscopy in Silicon Nanoparticle Electric and Magnetic Dipole Resonance near a Metal Surface , 2015 .

[35]  Ran Duan,et al.  Sensing Based on Fano-Type Resonance Response of All-Dielectric Metamaterials , 2015, Sensors.

[36]  Lei Wang,et al.  Efficient Polarization-Insensitive Complex Wavefront Control Using Huygens’ Metasurfaces Based on Dielectric Resonant Meta-atoms , 2016, 1602.00755.

[37]  J. Valentine,et al.  Dielectric metasurface analogue of electromagnetically induced transparency , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[38]  S. Maier,et al.  Terahertz All-Dielectric Magnetic Mirror Metasurfaces , 2016 .

[39]  Z. Di,et al.  Electronic and Interface Properties in Graphene Oxide/Hydrogen‐Passivated Ge Heterostructure , 2018, physica status solidi (RRL) - Rapid Research Letters.

[40]  Zhi-Gang Yu,et al.  Perfect dielectric-metamaterial reflector , 2013 .

[41]  Zheng Zhang,et al.  Novel Piezoelectric Paper‐Based Flexible Nanogenerators Composed of BaTiO3 Nanoparticles and Bacterial Cellulose , 2015, Advanced science.

[42]  Ji Zhou,et al.  Low loss negative refraction metamaterial using a close arrangement of split-ring resonator arrays , 2010 .

[43]  Kebin Fan,et al.  Experimental realization of a terahertz all-dielectric metasurface absorber. , 2017, Optics express.

[44]  Y. Kivshar,et al.  Interplay of Magnetic Responses in All-Dielectric Oligomers To Realize Magnetic Fano Resonances , 2015, 1607.04592.

[45]  F. Capasso,et al.  High efficiency dielectric metasurfaces at visible wavelengths , 2016, 1603.02735.

[46]  I. Brener,et al.  Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. , 2013, ACS nano.

[47]  M. Sinclair,et al.  Infrared Dielectric Resonator Metamaterial , 2011, 1108.4911.

[48]  Ji Zhou,et al.  Experimental realization of Mie-resonance terahertz absorber by self-assembly method. , 2018, Optics express.

[49]  P. Kužel,et al.  Resonant magnetic response of TiO2 microspheres at terahertz frequencies , 2012 .

[50]  Minggui Wei,et al.  Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime , 2018 .

[51]  Jan G. Korvink,et al.  Terahertz metamaterials fabricated by inkjet printing , 2009 .

[52]  Federico Capasso,et al.  Broadband high-efficiency dielectric metasurfaces for the visible spectrum , 2016, Proceedings of the National Academy of Sciences.