A parallel evolution strategy for an earth imaging problem in geophysics

In this paper we propose a new way to compute a rough approximation solution, to be later used as a warm starting point in a more refined optimization process, for a challenging global optimization problem related to earth imaging in geophysics. The warm start consists of a velocity model that approximately solves a full-waveform inverse problem at low frequency. Our motivation arises from the availability of massively parallel computing platforms and the natural parallelization of evolution strategies as global optimization methods for continuous variables. Our first contribution consists of developing a new and efficient parametrization of the velocity models to significantly reduce the dimension of the original optimization space. Our second contribution is to adapt a class of evolution strategies to the specificity of the physical problem at hands where the objective function evaluation is known to be the most expensive computational part. A third contribution is the development of a parallel evolution strategy solver, taking advantage of a recently proposed modification of these class of evolutionary methods that ensures convergence and promotes better performance under moderate budgets. The numerical results presented demonstrate the effectiveness of the algorithm on a realistic 3D full-waveform inverse problem in geophysics. The developed numerical approach allows us to successfully solve an acoustic full-waveform inversion problem at low frequencies on a reasonable number of cores of a distributed memory computer.

[1]  Anne Auger,et al.  Evolution Strategies , 2018, Handbook of Computational Intelligence.

[2]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[3]  J. Skilling,et al.  Maximum entropy image reconstruction: general algorithm , 1984 .

[4]  R. Shipp,et al.  Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data , 1999 .

[5]  Youssef Diouane Des stratégies évolutionnaires globalement convergentes avec une application en imagerie sismique pour la géophysique. (Globally convergent evolution strategies with application to Earth imaging problem in geophysics) , 2014 .

[6]  Amy Henderson Squilacote The Paraview Guide , 2008 .

[7]  Gilles Lambaré,et al.  Practical aspects and applications of 2D stereotomography , 2003 .

[8]  C. Shin,et al.  Laplace-domain full-waveform inversion of seismic data lacking low-frequency information , 2012 .

[9]  Changsoo Shin,et al.  A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains , 2008 .

[10]  Gilles Lambaré,et al.  Velocity macro‐model estimation from seismic reflection data by stereotomography , 1998 .

[11]  Rafael Lago A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics , 2013 .

[12]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[13]  Vladimir Britanak,et al.  CHAPTER 1 – Discrete Cosine and Sine Transforms , 2006 .

[14]  Serge Gratton,et al.  Globally convergent evolution strategies , 2015, Math. Program..

[15]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[16]  Jean-Yves L'Excellent,et al.  FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data - Part 2: Numerical examples and scalability analysis , 2009, Computational Geosciences.

[17]  B. Kennett,et al.  Subspace methods for large inverse problems with multiple parameter classes , 1988 .

[18]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[19]  X. Pinel,et al.  A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics , 2010 .

[20]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[21]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[22]  Xiaodong Li,et al.  A Comparative Study of CMA-ES on Large Scale Global Optimisation , 2010, Australasian Conference on Artificial Intelligence.

[23]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[24]  Henri Calandra,et al.  Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics , 2012, SIAM J. Sci. Comput..

[25]  Peter Gerstoft,et al.  Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions , 1994 .

[26]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[27]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[28]  Henrik Schmidt,et al.  Nonlinear inversion for ocean‐bottom properties , 1992 .

[29]  D. Oldenburg,et al.  Generalized subspace methods for large-scale inverse problems , 1993 .

[30]  Thomas Rauber,et al.  Parallel Programming , 2013, Springer Berlin Heidelberg.

[31]  Henri Calandra,et al.  A Modified Block Flexible GMRES Method with Deflation at Each Iteration for the Solution of Non-Hermitian Linear Systems with Multiple Right-Hand Sides , 2013, SIAM J. Sci. Comput..

[32]  Guust Nolet,et al.  Seismic tomography : with applications in global seismology and exploration geophysics , 1987 .

[33]  C. Shin,et al.  Waveform inversion in the Laplace domain , 2008 .

[34]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[35]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[36]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[37]  Jean Virieux,et al.  Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: Application to the eastern Nankai trough , 2006 .

[38]  Jean-Yves L'Excellent,et al.  FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data - Part 1: Algorithm , 2009, Comput. Geosci..

[39]  W. Marsden I and J , 2012 .

[40]  Akhilesh Bijalwan,et al.  A Comprehensive Review of Image Smoothing Techniques , 2012 .

[41]  N. Anders Petersson,et al.  Source Estimation by Full Wave Form Inversion , 2014, J. Sci. Comput..

[42]  Jean Virieux,et al.  Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt , 2004 .

[43]  Serge Gratton,et al.  Globally convergent evolution strategies for constrained optimization , 2015, Comput. Optim. Appl..

[44]  S. Griffis EDITOR , 1997, Journal of Navigation.

[45]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[46]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[47]  Anne Auger,et al.  Experimental Comparisons of Derivative Free Optimization Algorithms , 2009, SEA.

[48]  Romain Brossier Imagerie sismique à deux dimensions des milieux visco-élastiques par inversion des formes d'ondes : développements méthodologiques et applications , 2009 .

[49]  Nikolaus Hansen,et al.  On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.

[50]  A NikaraJari,et al.  Discrete cosine and sine transforms , 2006 .

[51]  L. Sirgue,et al.  The Importance of Low Frequency and Large Offset in Waveform Inversion , 2006 .

[52]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[53]  Anne Auger,et al.  Benchmarking the local metamodel CMA-ES on the noiseless BBOB'2013 test bed , 2013, GECCO.

[54]  Utkarsh Ayachit,et al.  The ParaView Guide: A Parallel Visualization Application , 2015 .

[55]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[56]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[57]  Thomas Rauber,et al.  Parallel Programming: for Multicore and Cluster Systems , 2010, Parallel Programming, 3rd Ed..

[58]  Wim A. Mulder,et al.  Exploring some issues in acoustic full waveform inversion , 2008 .