Hybrid-Polarity SAR Architecture

A synthetic aperture radar (SAR) often is constrained to transmit only one polarization. Within this constraint, two aggressive measurement objectives are 1) full characterization and exploitation of the backscattered field, and 2) invariance to geometrical orientations of features in the scene. Full characterization implies coherent dual-polarization to support the four Stokes parameters. These are rotationally invariant with respect backscatterer orientation if and only if the transmission is circularly polarized. Given that the data products are the Stokes parameters, the receivers can use any orthogonal polarization basis. A SAR in hybrid-polarity architecture (CL-pol) transmits circular polarization and receives two orthogonal mutually coherent linear polarizations, which is one manifestation of compact polarimetry. The resulting radar is relatively simple to implement, and has unique self-calibration features and low susceptibility to noise and cross-channel errors. It is the architecture of choice for two lunar radars scheduled for launch in 2008. Data from a CL-pol SAR yield to decomposition strategies such as the m-delta method introduced in this paper.

[1]  Carlos López-Martínez,et al.  Statistical Assessment of Eigenvector-Based Target Decomposition Theorems in Radar Polarimetry , 2005, IEEE Trans. Geosci. Remote. Sens..

[2]  N. Wiener Generalized harmonic analysis , 1930 .

[3]  Bruce A. Campbell,et al.  Impact crater related surficial deposits on Venus: Multipolarization radar observations with Arecibo , 2004 .

[4]  Yves Gingras,et al.  Alternate Transmission of +45° and −45° Slant Polarization and Simultaneous Reception of Vertical and Horizontal Polarization for Precipitation Measurement , 2000 .

[5]  Jean-Claude Souyris,et al.  Polarimetry based on one transmitting and two receiving polarizations: the /spl pi//4 mode , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[6]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[7]  R. Brockelman,et al.  Tenuous Surface Layer on the Moon: Evidence Derived from Radar Observations , 1965, Science.

[8]  E. Wolf Coherence properties of partially polarized electromagnetic radiation , 1959 .

[9]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[10]  Albert Guissard,et al.  Mueller and Kennaugh matrices in radar polarimetry , 1994, IEEE Trans. Geosci. Remote. Sens..

[11]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[12]  R.K. Raney Hybrid-Polarity SAR Architecture , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[13]  R. K. Raney,et al.  Decomposition of Hybrid-Polarity SAR Data , 2007 .

[14]  U. Fano,et al.  A Stokes-Parameter Technique for the Treatment of Polarization in Quantum Mechanics , 1954 .

[15]  Irena Hajnsek,et al.  Polarimetric and interferometric characterization of coherent scatterers in urban areas , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[16]  R. Keith Raney,et al.  On the use of permanent symmetric scatterers for ship characterization , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[17]  R. Velez,et al.  Radar mapping of Mercury's polar anomalies , 1994, Nature.

[18]  Jean-Claude Souyris,et al.  Compact polarimetry based on symmetry properties of geophysical media: the /spl pi//4 mode , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Pascale Dubois-Fernandez,et al.  The Specificity of P Band PolInSAR Data over Vegetation , 2007 .

[20]  Marshall H. Cohen,et al.  Radio Astronomy Polarization Measurements , 1958, Proceedings of the IRE.

[21]  J. S. Lee,et al.  A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction , 2004 .

[22]  N.J.S. Stacy,et al.  Stokes vector analysis of lunar radar backscatter , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[23]  Bruce Hapke,et al.  Coherent backscatter and the radar characteristics of outer planet satellites , 1990 .

[24]  J. P. Woerdman,et al.  Physical bounds to the entropy-depolarization relation in random light scattering. , 2005, Physical review letters.

[25]  K. Jon Ranson,et al.  Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[26]  David E. Smith,et al.  Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission , 2007 .

[27]  Steven J. Ostro,et al.  Planetary radar astronomy , 1983 .

[28]  Laurent Ferro-Famil,et al.  Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[29]  C. L. Lichtenberg,et al.  Mini-RF: Imaging Radars for Exploring the Lunar Poles , 2007 .

[30]  L. Norikane,et al.  Data volume reduction for imaging radar polarimeter , 1989, Digest on Antennas and Propagation Society International Symposium.

[31]  T. A. Seliga,et al.  The last two decades of multiparameter observations in radar meteorology: prelude to an even brighter future , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[32]  R. Keith Raney Hybrid-Quad-Pol SAR , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[33]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[34]  D. Muhleman,et al.  Mercury Radar Imaging: Evidence for Polar Ice , 1992, Science.

[35]  H. Zebker,et al.  Imaging radar polarization signatures: Theory and observation , 1987 .

[36]  Laurent Ferro-Famil,et al.  Orientation angle preserving a posteriori polarimetric SAR calibration , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[37]  R. Keith Raney,et al.  Dual-polarized SAR and Stokes parameters , 2006, IEEE Geoscience and Remote Sensing Letters.

[38]  E. Wolf Optics in terms of observable quantities , 1954 .

[39]  R. K. Raney A 'free' 3-dB cross-polarized SAR data , 1988 .