State Space and ARMA Models: An Overview of the Equivalence

La presente etude contient une synthese des resultats ayant trait a l’equivalence qui existe entre les modeles d’espace d’etat et les modeles autoregressifs a moyennes mobiles dotes de variables exogenes ou modeles ARMAX (vecteur autoregressif compris). Meme si la plupart de ces resultats ne sont pas nouveaux, aucun document ne semblait reunir jusqu’ici toute l’information a leur sujet.

[1]  M. Aoki,et al.  State space modeling of multiple time series , 1991 .

[2]  Thomas J. Sargent,et al.  The Observational Equivalence of Natural and Unnatural Rate Theories of Macroeconomics , 1976, Journal of Political Economy.

[3]  Roberto Guidorzi,et al.  Invariants and canonical forms for systems structural and parametric identification , 1981, Autom..

[4]  Richard J. Vaccaro,et al.  A solution to the positivity problem in the state-space approach to modeling vector-valued time series , 1993 .

[5]  S. Johansen Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models , 1991 .

[6]  Olivier J. Blanchard,et al.  The Dynamic Effects of Aggregate Demand and Supply Disturbances , 1988 .

[7]  Manfred Deistler,et al.  The Properties of the Parameterization of ARMAX Systems and Their Relevance for Structural Estimation and Dynamic Specification , 1983 .

[8]  R. Kálmán,et al.  On Invariants, Canonical Forms and Moduli for Linear, Constant, Finite Dimensional, Dynamical Systems , 1976 .

[9]  L. Ljung Convergence analysis of parametric identification methods , 1978 .

[10]  F. Komaki State-space modelling of time series sampled from continuous processes with pulses , 1993 .

[11]  Uwe Helmke The topology of the space of linear systems , 1982, 1982 21st IEEE Conference on Decision and Control.

[12]  N. Steenrod The Topology of Fibre Bundles. (PMS-14) , 1951 .

[13]  E. Hannan,et al.  The Statistical Theory of Linear Systems. , 1990 .

[14]  Gregory C. Reinsel,et al.  VECTOR AUTOREGRESSIVE MODELS WITH UNIT ROOTS AND REDUCED RANK STRUCTURE:ESTIMATION. LIKELIHOOD RATIO TEST, AND FORECASTING , 1992 .

[15]  Lennart Ljung,et al.  On-line structure selection for multivariable state-space models , 1982, Autom..

[16]  M. Watson,et al.  Sources of Business Cycle Fluctuations , 1988, NBER Macroeconomics Annual.

[17]  C. Granger,et al.  Co-integration and error correction: representation, estimation and testing , 1987 .

[18]  Stephen G. Cecchetti,et al.  Sources of Output Fluctuations During the Interwar Period: Further Evidence on the Causes of the Great Depression , 1992 .

[19]  R. L. Basmann Causality tests and observationally equivalent representations of econometric models , 1988 .

[20]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[21]  J. M. C. Clark,et al.  The consistent selection of parameterizations in system identification , 1976 .

[22]  Christiaan Heij,et al.  Positivity conditions for stochastic state space modelling of time series , 1992 .

[23]  S. Mittnik State space modeling of multiple time series: a comment , 1991 .

[24]  Clifford Goodman,et al.  American Society of Mechanical Engineers , 1988 .

[25]  R. Ho Algebraic Topology , 2022 .

[26]  Michiel Hazewinkel,et al.  On identification and the geometry of the space of linear systems , 1979 .

[27]  Manfred Deistler,et al.  Some properties of the parameterization of ARMA systems with unknown order , 1981 .

[28]  S. Johansen STATISTICAL ANALYSIS OF COINTEGRATION VECTORS , 1988 .

[29]  David Forbes Delchamps The geometry of spaces of linear systems with an application to the identification problem , 1982 .

[30]  J. Galí,et al.  How Well Does The IS-LM Model Fit Postwar U. S. Data? , 1992 .

[31]  D. Delchamps,et al.  Critical point behavior of objective functions defined on spaces of multivariable systems , 1982, 1982 21st IEEE Conference on Decision and Control.

[32]  L. Silverman,et al.  Model reduction via balanced state space representations , 1982 .