Connecting Anti-integrability to Attractors for Three-Dimensional Quadratic Diffeomorphisms
暂无分享,去创建一个
[1] Amanda E Hampton,et al. The three-dimensional generalized Hénon map: Bifurcations and attractors. , 2022, Chaos.
[2] Amanda E Hampton,et al. Anti-integrability for Three-Dimensional Quadratic Maps , 2021, SIAM J. Appl. Dyn. Syst..
[3] A. Kazakov,et al. On discrete Lorenz-like attractors. , 2021, Chaos.
[4] Hung-Ju Chen,et al. Stability of symbolic embeddings for difference equations and their multidimensional perturbations , 2015 .
[5] Leon Glass,et al. Bifurcation structures in two-dimensional maps: The endoskeletons of shrimps , 2013 .
[6] Ming-Chia Li,et al. Approximation of entropy on hyperbolic sets for one-dimensional maps and their multidimensional perturbations , 2010 .
[7] Jonq Juang,et al. Chaotic difference equations in two variables and their multidimensional perturbations , 2008 .
[8] J. Meiss,et al. Nilpotent normal form for divergence-free vector fields and volume-preserving maps , 2007, 0706.1575.
[9] Ming-Chia Li,et al. Topological horseshoes for perturbations of singular difference equations , 2006 .
[10] Yi-Chiuan Chen,et al. Smale horseshoe via the anti-integrability , 2006 .
[11] I. I. Ovsyannikov,et al. CHAOTIC DYNAMICS OF THREE-DIMENSIONAL H ENON MAPS THAT ORIGINATE FROM A HOMOCLINIC BIFURCATION , 2005, nlin/0510061.
[12] James D. Meiss,et al. Symbolic Codes for Rotational Orbits , 2004, SIAM J. Appl. Dyn. Syst..
[13] James D. Meiss,et al. Homoclinic bifurcations for the Hénon map , 1999, chao-dyn/9904019.
[14] James D. Meiss,et al. Computing periodic orbits using the anti-integrable limit , 1998, chao-dyn/9802014.
[15] J. Meiss,et al. Quadratic volume preserving maps , 1997, chao-dyn/9706001.
[16] S. Aubry. Anti-integrability in dynamic and variational problems , 1995 .
[17] R. MacKay,et al. The one to two-hole transition for cantori , 1994 .
[18] R. MacKay,et al. Cantori for multiharmonic maps , 1993 .
[19] B. Hao,et al. Symbolic dynamics and characterization of complexity , 1991 .
[20] S. Aubry,et al. Chaotic trajectories in the standard map. The concept of anti-integrability , 1990 .
[21] Robert S. MacKay,et al. Some flesh on the skeleton: The bifurcation structure of bimodal maps , 1987 .
[22] Bernd Krauskopf,et al. Numerical Continuation Methods for Dynamical Systems , 2007 .
[23] J. Meiss,et al. Quadratic volume preserving maps: an extension of a result of Moser , 1999 .
[24] Jason A. C. Gallas,et al. Dissecting shrimps: results for some one-dimensional physical models , 1994 .
[25] James D. Meiss,et al. Cantori for symplectic maps near the anti-integrable limit , 1992 .
[26] E. Allgower,et al. Numerical Continuation Methods , 1990 .