Connecting Anti-integrability to Attractors for Three-Dimensional Quadratic Diffeomorphisms

We previously showed that three-dimensional quadratic diffeomorphisms have anti-integrable (AI) limits that correspond to a quadratic correspondence; a pair of one-dimensional maps. At the AI limit the dynamics is conjugate to a full shift on two symbols. Here we consider a more general AI limit, allowing two parameters of the map to go to infinity. We prove the existence of AI states for each symbol sequence for three cases of the quadratic correspondence: parabolas, ellipses and hyperbolas. A contraction argument gives parameter domains such that this is a bijection, but the correspondence also is observed to apply more generally. We show that orbits of the original map can be obtained by numerical continuation for a volume-contracting case. These results show that periodic AI states evolve into the observed periodic attractors of the diffeomorphism. We also continue a periodic AI state with a symbol sequence chosen so that it continues to an orbit resembling a chaotic attractor that is a 3D version of the classical 2D H\'enon attractor.

[1]  Amanda E Hampton,et al.  The three-dimensional generalized Hénon map: Bifurcations and attractors. , 2022, Chaos.

[2]  Amanda E Hampton,et al.  Anti-integrability for Three-Dimensional Quadratic Maps , 2021, SIAM J. Appl. Dyn. Syst..

[3]  A. Kazakov,et al.  On discrete Lorenz-like attractors. , 2021, Chaos.

[4]  Hung-Ju Chen,et al.  Stability of symbolic embeddings for difference equations and their multidimensional perturbations , 2015 .

[5]  Leon Glass,et al.  Bifurcation structures in two-dimensional maps: The endoskeletons of shrimps , 2013 .

[6]  Ming-Chia Li,et al.  Approximation of entropy on hyperbolic sets for one-dimensional maps and their multidimensional perturbations , 2010 .

[7]  Jonq Juang,et al.  Chaotic difference equations in two variables and their multidimensional perturbations , 2008 .

[8]  J. Meiss,et al.  Nilpotent normal form for divergence-free vector fields and volume-preserving maps , 2007, 0706.1575.

[9]  Ming-Chia Li,et al.  Topological horseshoes for perturbations of singular difference equations , 2006 .

[10]  Yi-Chiuan Chen,et al.  Smale horseshoe via the anti-integrability , 2006 .

[11]  I. I. Ovsyannikov,et al.  CHAOTIC DYNAMICS OF THREE-DIMENSIONAL H ENON MAPS THAT ORIGINATE FROM A HOMOCLINIC BIFURCATION , 2005, nlin/0510061.

[12]  James D. Meiss,et al.  Symbolic Codes for Rotational Orbits , 2004, SIAM J. Appl. Dyn. Syst..

[13]  James D. Meiss,et al.  Homoclinic bifurcations for the Hénon map , 1999, chao-dyn/9904019.

[14]  James D. Meiss,et al.  Computing periodic orbits using the anti-integrable limit , 1998, chao-dyn/9802014.

[15]  J. Meiss,et al.  Quadratic volume preserving maps , 1997, chao-dyn/9706001.

[16]  S. Aubry Anti-integrability in dynamic and variational problems , 1995 .

[17]  R. MacKay,et al.  The one to two-hole transition for cantori , 1994 .

[18]  R. MacKay,et al.  Cantori for multiharmonic maps , 1993 .

[19]  B. Hao,et al.  Symbolic dynamics and characterization of complexity , 1991 .

[20]  S. Aubry,et al.  Chaotic trajectories in the standard map. The concept of anti-integrability , 1990 .

[21]  Robert S. MacKay,et al.  Some flesh on the skeleton: The bifurcation structure of bimodal maps , 1987 .

[22]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[23]  J. Meiss,et al.  Quadratic volume preserving maps: an extension of a result of Moser , 1999 .

[24]  Jason A. C. Gallas,et al.  Dissecting shrimps: results for some one-dimensional physical models , 1994 .

[25]  James D. Meiss,et al.  Cantori for symplectic maps near the anti-integrable limit , 1992 .

[26]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .