Robustness of estimators of long-range dependence and self-similarity under non-Gaussianity

Long-range dependence (LRD) and non-Gaussianity are ubiquitous in many natural systems such as ecosystems, biological systems and climate. However, it is not always appreciated that the two phenomena may occur together in natural systems and that self-similarity in a system can be a superposition of both phenomena. These features, which are common in complex systems, impact the attribution of trends and the occurrence and clustering of extremes. The risk assessment of systems with these properties will lead to different outcomes (e.g. return periods) than the more common assumption of independence of extremes. Two paradigmatic models are discussed that can simultaneously account for LRD and non-Gaussianity: autoregressive fractional integrated moving average (ARFIMA) and linear fractional stable motion (LFSM). Statistical properties of estimators for LRD and self-similarity are critically assessed. It is found that the most popular estimators can be biased in the presence of important features of many natural systems like trends and multiplicative noise. Also the LRD and non-Gaussianity of two typical natural time series are discussed.

[1]  A. Majda,et al.  Normal forms for reduced stochastic climate models , 2009, Proceedings of the National Academy of Sciences.

[2]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[3]  John Turner,et al.  The SCAR READER Project: toward a high-quality database of mean Antarctic meteorological observations , 2004 .

[4]  P. Imkeller,et al.  Stochastic climate models , 2001 .

[5]  Peter C. B. Phillips,et al.  Exact Local Whittle Estimation of Fractional Integration , 2002 .

[6]  Henning W. Rust,et al.  Fewer jumps, less memory: Homogenized temperature records and long memory , 2008 .

[7]  Adrian F. Tuck,et al.  Fractal behavior of ozone, wind and temperature in the lower stratosphere , 1999 .

[8]  Christian L. E. Franzke,et al.  Long-Range Dependence and Climate Noise Characteristics of Antarctic Temperature Data , 2010 .

[9]  K. Hasselmann Stochastic climate models Part I. Theory , 1976 .

[10]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[11]  Kristoffer Rypdal,et al.  Stochastic modeling of the AE index and its relation to fluctuations in Bz of the IMF on time scales shorter than substorm duration , 2010 .

[12]  Masahisa Sugiura,et al.  Auroral electrojet activity index AE and its universal time variations. , 1966 .

[13]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[14]  Rodolfo Cruz-Silva,et al.  Self-affinity study of nanostructured porous silicon–crystalline silicon interfaces , 2009 .

[15]  Jürgen P. Kropp,et al.  In extremis : disruptive events and trends in climate and hydrology , 2011 .

[16]  J. Timmer,et al.  Tempting long-memory - on the interpretation of DFA results , 2004 .

[17]  P. Bruns,et al.  Long-term storage. , 2000, Methods in cell biology.

[18]  Jean-Marc Bardet,et al.  Recent advances on the semi-parametric estimation of the long-range dependence coefficient , 1998 .

[19]  J. R. Wallis,et al.  Noah, Joseph, and Operational Hydrology , 1968 .

[20]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[21]  Peter C. B. Phillips,et al.  Local Whittle estimation of fractional integration and some of its variants , 2006 .

[22]  Peter Huybers,et al.  Links between annual, Milankovitch and continuum temperature variability , 2005, Nature.

[23]  G. Consolini,et al.  Multifractal structure of auroral electrojet index data. , 1996, Physical review letters.

[24]  György Steinbrecher,et al.  Generalized randomly amplified linear system driven by gaussian noises: extreme heavy tail and algebraic correlation decay in plasma turbulence. , 2004, Physical review letters.

[25]  H. Stanley,et al.  Effect of trends on detrended fluctuation analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  E. H. Lloyd,et al.  Long-Term Storage: An Experimental Study. , 1966 .

[27]  P. Devynck,et al.  Characterization of self similarity properties of turbulence in , 2001 .

[28]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[29]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[30]  M. Taqqu,et al.  Estimating long-range dependence in the presence of periodicity: An empirical study , 1999 .

[31]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[32]  Karina Weron,et al.  Enigma of Self-Similarity of Fractional Levy Stable Motions , 2003 .

[33]  Rohit S. Deo,et al.  The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series , 1998 .

[34]  M. Scheffer,et al.  Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  J. S. Marron,et al.  On the wavelet spectrum diagnostic for Hurst parameter estimation in the analysis of Internet traffic , 2005, Comput. Networks.

[36]  M. Ogurtsov,et al.  New Evidence for Long-Term Persistence in the Sun's Activity , 2004 .

[37]  M. Koch,et al.  Sensitivity of Hurst parameter estimation to periodic signals in time series and filtering approaches , 2005 .

[38]  Harvard Medical School,et al.  Effect of nonstationarities on detrended fluctuation analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Paul J. Kushner,et al.  Power-Law and Long-Memory Characteristics of the Atmospheric General Circulation , 2009 .

[40]  Murad S. Taqqu,et al.  Asymptotic self‐similarity and wavelet estimation for long‐range dependent fractional autoregressive integrated moving average time series with stable innovations , 2005 .

[41]  Eric Moulines,et al.  The FEXP estimator for potentially non-stationary linear time series , 2002 .

[42]  B. Mandelbrot Gaussian Self-Affinity and Fractals: Globality, The Earth, 1/f Noise, and R/S (Selecta (Old or New), Volume H) , 2001 .

[43]  H. Stanley,et al.  Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series , 2002, physics/0202070.

[44]  S. Havlin,et al.  Comparison of detrending methods for fluctuation analysis , 2008, 0804.4081.

[45]  Shlomo Havlin,et al.  Long-term memory: a natural mechanism for the clustering of extreme events and anomalous residual times in climate records. , 2005, Physical review letters.

[46]  Jan Sieber,et al.  Nonlinear softening as a predictive precursor to climate tipping , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  Wei Biao Wu,et al.  LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES , 2007, Econometric Theory.

[48]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[49]  M. Taqqu,et al.  Simulation methods for linear fractional stable motion and farima using the fast fourier transform , 2004 .

[50]  Timothy M. Lenton,et al.  A modified method for detecting incipient bifurcations in a dynamical system , 2007 .

[51]  D. E. NewmanPhysics,et al.  Using the R/s Statistic to Analyze Ae Data , 2022 .

[52]  Nicholas Watkins,et al.  Nonlinear Processes in Geophysics Scaling in the Space Climatology of the Auroral Indices: Is Soc the Only Possible Description? , 2022 .

[53]  É. Moulines,et al.  Log-Periodogram Regression Of Time Series With Long Range Dependence , 1999 .

[54]  L. Oxley,et al.  Estimators for Long Range Dependence: An Empirical Study , 2009, 0901.0762.

[55]  A. Bunde,et al.  On the Occurence of Extreme Events in Long-term Correlated and Multifractal Data Sets , 2008 .

[56]  Roux,et al.  Reliability of self-affine measurements. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  David B. Stephenson,et al.  Serial Clustering of Extratropical Cyclones , 2006 .

[58]  Vladimir Kossobokov,et al.  Extreme events: dynamics, statistics and prediction , 2011 .

[59]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[60]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  Philippe Soulier,et al.  Estimating Long Memory in Volatility , 2002 .