Rigorous numerics for NLS: bound states, spectra, and controllability
暂无分享,去创建一个
[1] W. Schlag,et al. The nonlinear Schrödinger equation , 2008 .
[2] Karine Beauchard. CONTROLLABLITY OF A QUANTUM PARTICLE IN A 1D VARIABLE DOMAIN , 2008 .
[3] Jean-Philippe Lessard,et al. Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .
[4] Jean-Philippe Lessard,et al. Rigorous Numerics in Floquet Theory: Computing Stable and Unstable Bundles of Periodic Orbits , 2011, SIAM J. Appl. Dyn. Syst..
[5] J. Lessard,et al. A METHOD TO RIGOROUSLY ENCLOSE EIGENPAIRS OF COMPLEX INTERVAL MATRICES , 2013 .
[6] Gianni Arioli,et al. Computer-Assisted Methods for the Study of Stationary Solutions in Dissipative Systems, Applied to the Kuramoto–Sivashinski Equation , 2010 .
[7] Adiabaticity in nonlinear quantum dynamics: Bose-Einstein condensate in a time-varying box , 2001, cond-mat/0111416.
[8] H. Rabitz,et al. CONTROL OF QUANTUM PHENOMENA , 2011 .
[9] T. P. Meyrath,et al. Bose Einstein Condensate in a Box , 2005 .
[10] C. Fefferman,et al. Relativistic Stability of Matter - I , 1986 .
[11] W. Reichel,et al. Interfaces Supporting Surface Gap Soliton Ground States in the 1D Nonlinear Schroedinger Equation , 2012, 1202.3588.
[12] Gideon Simpson,et al. Spectral analysis for matrix Hamiltonian operators , 2010, 1003.2474.
[13] Laurent Demanet,et al. Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation , 2006 .
[14] Konstantin Mischaikow,et al. Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..
[15] Warwick Tucker,et al. Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .
[16] Stationary solutions of the one-dimensional nonlinear Schrodinger equation: II. Case of attractive nonlinearity , 1999, cond-mat/9911177.
[17] O. Lanford. A computer-assisted proof of the Feigenbaum conjectures , 1982 .
[18] Nobito Yamamoto,et al. A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach's Fixed-Point Theorem , 1998 .
[19] Shu-Ming Chang,et al. Spectra of Linearized Operators for NLS Solitary Waves , 2006, SIAM J. Math. Anal..
[20] Jean-Philippe Lessard,et al. Chaotic Braided Solutions via Rigorous Numerics: Chaos in the Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..
[21] Zbigniew Galias,et al. Infinite Dimensional Krawczyk Operator for Finding Periodic orbits of Discrete Dynamical Systems , 2007, Int. J. Bifurc. Chaos.
[22] A. del Campo,et al. Shortcuts to adiabaticity in a time-dependent box , 2012, Scientific Reports.
[23] H. Koch,et al. Non-symmetric low-index solutions for a symmetric boundary value problem , 2012 .
[24] Charles Fefferman,et al. Interval Arithmetic in Quantum Mechanics , 1996 .
[25] Gideon Simpson,et al. Embedded eigenvalues and the nonlinear Schrödinger equation , 2011, 1101.2485.
[26] Konstantin Mischaikow,et al. Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..
[27] Rudolf Krawczyk,et al. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken , 1969, Computing.
[28] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[29] Karine Beauchard,et al. Local exact controllability of a 1D Bose-Einstein condensate in a time-varying box , 2013, 1303.2713.
[30] Michael Plum,et al. Eigenvalue excluding for perturbed-periodic one-dimensional Schrödinger operators , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[31] W. Tucker. The Lorenz attractor exists , 1999 .
[32] Karine Beauchard,et al. Local Exact Controllability of a One-Dimensional Nonlinear Schrödinger Equation , 2015, SIAM J. Control. Optim..
[33] C. Psaroudaki,et al. Oscillations of a Bose–Einstein condensate in a rapidly contracting circular box , 2009 .