Rigorous numerics for NLS: bound states, spectra, and controllability

In this paper it is demonstrated how rigorous numerics may be applied to the one-dimensional nonlinear Schr\"odinger equation (NLS); specifically, to determining bound--state solutions and establishing certain spectral properties of the linearization. Since the results are rigorous, they can be used to complete a recent analytical proof [6] of the local exact controllability of NLS.

[1]  W. Schlag,et al.  The nonlinear Schrödinger equation , 2008 .

[2]  Karine Beauchard CONTROLLABLITY OF A QUANTUM PARTICLE IN A 1D VARIABLE DOMAIN , 2008 .

[3]  Jean-Philippe Lessard,et al.  Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .

[4]  Jean-Philippe Lessard,et al.  Rigorous Numerics in Floquet Theory: Computing Stable and Unstable Bundles of Periodic Orbits , 2011, SIAM J. Appl. Dyn. Syst..

[5]  J. Lessard,et al.  A METHOD TO RIGOROUSLY ENCLOSE EIGENPAIRS OF COMPLEX INTERVAL MATRICES , 2013 .

[6]  Gianni Arioli,et al.  Computer-Assisted Methods for the Study of Stationary Solutions in Dissipative Systems, Applied to the Kuramoto–Sivashinski Equation , 2010 .

[7]  Adiabaticity in nonlinear quantum dynamics: Bose-Einstein condensate in a time-varying box , 2001, cond-mat/0111416.

[8]  H. Rabitz,et al.  CONTROL OF QUANTUM PHENOMENA , 2011 .

[9]  T. P. Meyrath,et al.  Bose Einstein Condensate in a Box , 2005 .

[10]  C. Fefferman,et al.  Relativistic Stability of Matter - I , 1986 .

[11]  W. Reichel,et al.  Interfaces Supporting Surface Gap Soliton Ground States in the 1D Nonlinear Schroedinger Equation , 2012, 1202.3588.

[12]  Gideon Simpson,et al.  Spectral analysis for matrix Hamiltonian operators , 2010, 1003.2474.

[13]  Laurent Demanet,et al.  Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation , 2006 .

[14]  Konstantin Mischaikow,et al.  Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..

[15]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[16]  Stationary solutions of the one-dimensional nonlinear Schrodinger equation: II. Case of attractive nonlinearity , 1999, cond-mat/9911177.

[17]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[18]  Nobito Yamamoto,et al.  A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach's Fixed-Point Theorem , 1998 .

[19]  Shu-Ming Chang,et al.  Spectra of Linearized Operators for NLS Solitary Waves , 2006, SIAM J. Math. Anal..

[20]  Jean-Philippe Lessard,et al.  Chaotic Braided Solutions via Rigorous Numerics: Chaos in the Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..

[21]  Zbigniew Galias,et al.  Infinite Dimensional Krawczyk Operator for Finding Periodic orbits of Discrete Dynamical Systems , 2007, Int. J. Bifurc. Chaos.

[22]  A. del Campo,et al.  Shortcuts to adiabaticity in a time-dependent box , 2012, Scientific Reports.

[23]  H. Koch,et al.  Non-symmetric low-index solutions for a symmetric boundary value problem , 2012 .

[24]  Charles Fefferman,et al.  Interval Arithmetic in Quantum Mechanics , 1996 .

[25]  Gideon Simpson,et al.  Embedded eigenvalues and the nonlinear Schrödinger equation , 2011, 1101.2485.

[26]  Konstantin Mischaikow,et al.  Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..

[27]  Rudolf Krawczyk,et al.  Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken , 1969, Computing.

[28]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[29]  Karine Beauchard,et al.  Local exact controllability of a 1D Bose-Einstein condensate in a time-varying box , 2013, 1303.2713.

[30]  Michael Plum,et al.  Eigenvalue excluding for perturbed-periodic one-dimensional Schrödinger operators , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  W. Tucker The Lorenz attractor exists , 1999 .

[32]  Karine Beauchard,et al.  Local Exact Controllability of a One-Dimensional Nonlinear Schrödinger Equation , 2015, SIAM J. Control. Optim..

[33]  C. Psaroudaki,et al.  Oscillations of a Bose–Einstein condensate in a rapidly contracting circular box , 2009 .