A sine-cosine method for handlingnonlinear wave equations

In this paper, we establish exact solutions for nonlinear wave equations. A sine-cosine method is used for obtaining traveling wave solutions for these models with minimal algebra. The method is applied to selected physical models to illustrate the usage of our main results.

[1]  M. Wadati Introduction to solitons , 2001 .

[2]  Abdul-Majid Wazwaz,et al.  General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive K(n, n) equations in higher dimensional spaces , 2002, Appl. Math. Comput..

[3]  G. Adomian A review of the decomposition method in applied mathematics , 1988 .

[4]  Abdul-Majid Wazwaz,et al.  Compactons dispersive structures for variants of the K(n,n) and the KP equations , 2002 .

[5]  A. Wazwaz A study of nonlinear dispersive equations with solitary-wave solutions having compact support , 2001 .

[6]  Philip Rosenau,et al.  Compact and noncompact dispersive patterns , 2000 .

[7]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[8]  M. S. Ismail,et al.  A numerical study of compactons , 1998 .

[9]  Abdul-Majid Wazwaz,et al.  Compact and noncompact structures in a class of nonlinearly dispersive equations , 2003, Math. Comput. Simul..

[10]  Abdul-Majid Wazwaz,et al.  A computational approach to soliton solutions of the Kadomtsev-Petviashvili equation , 2001, Appl. Math. Comput..

[11]  M. Wadati,et al.  The Modified Korteweg-de Vries Equation , 1973 .

[12]  M. Wadati,et al.  The Exact Solution of the Modified Korteweg-de Vries Equation , 1972 .

[13]  Abdul-Majid Wazwaz,et al.  Partial differential equations : methods and applications , 2002 .

[14]  Hyman,et al.  Compactons: Solitons with finite wavelength. , 1993, Physical review letters.

[15]  Abdul-Majid Wazwaz,et al.  Compactons and solitary patterns structures for variants of the KdV and the KP equations , 2003, Appl. Math. Comput..

[16]  Abdul-Majid Wazwaz,et al.  General compactons solutions for the focusing branch of the nonlinear dispersive K(n, n) equations in higher-dimensional spaces , 2002, Appl. Math. Comput..

[17]  A. Wazwaz A First Course in Integral Equations , 1997 .

[18]  Abdul-Majid Wazwaz,et al.  New solitary-wave special solutions with compact support for the nonlinear dispersive K(m, n) equations , 2002 .

[19]  A. Wazwaz Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method , 2001 .

[20]  Abdul-Majid Wazwaz,et al.  Exact special solutions with solitary patterns for the nonlinear dispersive K(m,n) equations , 2002 .