Information processing reveals how microscopic components affect the macroscopic system-state in complex networks

[1]  Általános társadalom tudományok,et al.  Diffusion of Innovations , 2011 .

[2]  J. Slotine,et al.  Controllability of complex networks , 2011, Nature.

[3]  K. Wiesner Nature computes: information processing in quantum dynamical systems. , 2010, Chaos.

[4]  James P Crutchfield,et al.  Time's barbed arrow: irreversibility, crypticity, and stored information. , 2009, Physical review letters.

[5]  D. Watts,et al.  Influentials, Networks, and Public Opinion Formation , 2007 .

[6]  J. S. Semura,et al.  Information Loss as a Foundational Principle for the Second Law of Thermodynamics , 2007, cond-mat/0703235.

[7]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[8]  J. Crutchfield,et al.  Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.

[9]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[10]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[11]  Hans J. Bremermann,et al.  Minimum energy requirements of information transfer and computing , 1982 .

[12]  J. Bekenstein Energy Cost of Information Transfer , 1981 .

[13]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[14]  B. C. Brookes Mathematical Foundations of Information Theory , 1959, The Mathematical Gazette.

[15]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[16]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[17]  R.,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..