Stacked denoising autoencoder‐based feature learning for out‐of‐control source recognition in multivariate manufacturing process

[1]  Simon J. Doran,et al.  Stacked Autoencoders for Unsupervised Feature Learning and Multiple Organ Detection in a Pilot Study Using 4D Patient Data , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Nishchal K. Verma,et al.  Generating feature sets for fault diagnosis using denoising stacked auto-encoder , 2016, 2016 IEEE International Conference on Prognostics and Health Management (ICPHM).

[3]  Chin-Hui Lee,et al.  Exploiting deep neural networks for detection-based speech recognition , 2013, Neurocomputing.

[4]  Chih-Ming Hsu,et al.  Analysis of variations in a multi-variate process using neural networks , 2003 .

[5]  Shu Zhan,et al.  Face detection using representation learning , 2016, Neurocomputing.

[6]  Yang Wang,et al.  Unsupervised local deep feature for image recognition , 2016, Inf. Sci..

[7]  Jing Jiang,et al.  Diagnosis of Out-of-control Signals in Multivariate Statistical Process Control Based on Bagging and Decision Tree , 2017 .

[8]  Esteban Alfaro,et al.  A boosting approach for understanding out-of-control signals in multivariate control charts , 2009 .

[9]  A. Izenman Linear Discriminant Analysis , 2013 .

[10]  Adnan Hassan,et al.  Improved SPC chart pattern recognition using statistical features , 2003 .

[11]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[12]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[13]  Nola D. Tracy,et al.  Decomposition of T2 for Multivariate Control Chart Interpretation , 1995 .

[14]  Tai-Yue Wang,et al.  Artificial neural networks to classify mean shifts from multivariate χ2 chart signals , 2004, Comput. Ind. Eng..

[15]  Ruey-Shiang Guh,et al.  On‐line Identification and Quantification of Mean Shifts in Bivariate Processes using a Neural Network‐based Approach , 2007, Qual. Reliab. Eng. Int..

[16]  Ahmet Palazoglu,et al.  Detecting abnormal process trends by wavelet‐domain hidden Markov models , 2003 .

[17]  Haibo He,et al.  Stacked Multilevel-Denoising Autoencoders: A New Representation Learning Approach for Wind Turbine Gearbox Fault Diagnosis , 2017, IEEE Transactions on Instrumentation and Measurement.

[18]  Xiaojun Zhou,et al.  Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble , 2009, Eng. Appl. Artif. Intell..

[19]  Shing I. Chang,et al.  A neural fuzzy control chart for detecting and classifying process mean shifts , 1996 .

[20]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[21]  Rasmus Berg Palm,et al.  Prediction as a candidate for learning deep hierarchical models of data , 2012 .

[22]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[23]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[24]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[25]  Lifeng Xi,et al.  A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes , 2009, Expert Syst. Appl..

[26]  Ruey-Shiang Guh,et al.  A hybrid learning-based model for on-line detection and analysis of control chart patterns , 2005, Comput. Ind. Eng..

[27]  Tai-Yue Wang,et al.  Mean shifts detection and classification in multivariate process: a neural-fuzzy approach , 2002, J. Intell. Manuf..

[28]  Duc Truong Pham,et al.  Control chart pattern recognition using learning vector quantization networks , 1994 .

[29]  Ahmet Palazoglu,et al.  Detection and classification of abnormal process situations using multidimensional wavelet domain hidden Markov trees , 2000 .

[30]  H. Brian Hwarng Detecting process mean shift in the presence of autocorrelation: a neural-network based monitoring scheme , 2004 .

[31]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[32]  Deborah F. Cook,et al.  Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters , 2001 .

[33]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[34]  Wen-An Yang Monitoring and diagnosing of mean shifts in multivariate manufacturing processes using two-level selective ensemble of learning vector quantization neural networks , 2015, J. Intell. Manuf..

[35]  Min Zhang,et al.  Multivariate process monitoring and fault identification using multiple decision tree classifiers , 2013 .

[36]  Seyed Taghi Akhavan Niaki,et al.  Fault Diagnosis in Multivariate Control Charts Using Artificial Neural Networks , 2005 .

[37]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[38]  Loon Ching Tang,et al.  Multivariate charting techniques: a review and a line‐column approach , 2010, Qual. Reliab. Eng. Int..

[39]  Razvan Pascanu,et al.  Theano: A CPU and GPU Math Compiler in Python , 2010, SciPy.

[40]  Gaoliang Peng,et al.  A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load , 2018, Mechanical Systems and Signal Processing.

[41]  Douglas M. Hawkins,et al.  Regression Adjustment for Variables in Multivariate Quality Control , 1993 .

[42]  Chuen-Sheng Cheng A multi-layer neural network model for detecting changes in the process mean , 1995 .

[43]  Ruey-Shiang Guh,et al.  An effective application of decision tree learning for on-line detection of mean shifts in multivariate control charts , 2008, Comput. Ind. Eng..

[44]  Hui Yang,et al.  Interpreting out-of-control signals using instance-based bayesian classifier in multivariate statistical process control , 2017, Commun. Stat. Simul. Comput..