Characteristic Thickness for a Dense La[sub 0.8]Sr[sub 0.2]MnO[sub 3] Electrode

Dense La0.8Sr0.2MnO3 LSM electrodes were patterned by photolithography and fabricated via pulsed-laser deposition on Y2O3-stabalized ZrO2 YSZ electrolytes. Impedance analysis shows that the interfacial polarization resistance decreases significantly as electrode thickness drops below a critical value, beyond which the top surface of the LSM becomes active for oxygen reduction. However, when the LSM electrodes become too thin, the in-plane sheet resistance of the LSM starts to limit the utilization of the electrodes along their length. Quantification of the characteristic thickness is important not only to intelligent design of practical mixed-conducting electrodes but also to electrode design for fundamental studies. © 2005 The Electrochemical Society. DOI: 10.1149/1.2050607 All rights reserved.

[1]  Junichiro Mizusaki,et al.  Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode La0.6Ca0.4MnO3 / YSZ , 1991 .

[2]  Meilin Liu,et al.  Equivalent Circuit Approximation to Porous Mixed‐Conducting Oxygen Electrodes in Solid‐State Cells , 1998 .

[3]  Y. Takeda,et al.  Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells , 1987 .

[4]  L. Gauckler,et al.  Reaction mechanism of Ni pattern anodes for solid oxide fuel cells , 2000 .

[5]  Meilin Liu,et al.  Significance of interfaces in solid-state cells with porous electrodes of mixed ionic–electronic conductors , 1998 .

[6]  B. Steele Survey of materials selection for ceramic fuel cells II. Cathodes and anodes , 1996 .

[7]  A. Chug,et al.  Integration of single crystal La0.7Sr0.3MnO3 films with Si(001) , 2002 .

[8]  Stephen J. Skinner,et al.  Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes , 2001 .

[9]  J. Maier,et al.  Local conductivitiy measurements on AgCl surfaces using microelectrodes , 1996 .

[10]  L. Gauckler,et al.  Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part II: Model implementation, parameter estimation, and validation , 1999 .

[11]  Ludwig J. Gauckler,et al.  Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part I: General framework, modelling, and structural investigation , 1999 .

[12]  Subhash C. Singhal,et al.  Estimation of Charge-Transfer Resistivity of La0.8Sr0.2MnO3 Cathode on Y 0.16Zr0.84 O 2 Electrolyte Using Patterned Electrodes , 2005 .

[13]  A. Mcevoy Thin SOFC electrolytes and their interfaces- A near-term research strategy , 2000 .

[14]  Jürgen Fleig,et al.  Geometry Dependence of Cathode Polarization in Solid Oxide Fuel Cells Investigated by Defined Sr ‐ Doped LaMnO3 Microelectrodes , 1999 .

[15]  Koichi Yamada,et al.  The relationship between overpotential and the three phase boundary length , 1996 .

[16]  H. Bouwmeester,et al.  Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia I. Three‐Phase Boundary Area , 1997 .

[17]  R. A. De Souza,et al.  A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ , 2000 .

[18]  Juergen Fleig Microelectrodes in solid state ionics , 2003 .

[19]  L. Gauckler,et al.  The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes , 2001 .

[20]  Jürgen Fleig,et al.  On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes , 2002 .

[21]  Mogens Bjerg Mogensen,et al.  Kinetic and geometric aspects of solid oxide fuel cell electrodes , 1996 .

[22]  Meilin Liu,et al.  A photolithographic process for investigation of electrode reaction sites in solid oxide fuel cells , 2005 .

[23]  Tohru Kato,et al.  Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique , 2002 .

[24]  J. Zhai,et al.  Role of oxygen pressure during pulsed laser deposition on the electrical and dielectric properties of antiferroelectric lanthanum-doped lead zirconate stannate titanate thin films , 2004 .

[25]  T. Kawai,et al.  Preparation of La0.9Sr0.1Ga0.85Mg0.15O2.875 thin films by pulsed-laser deposition and conductivity studies , 2002 .

[26]  F. Berkel,et al.  Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I–V characteristics , 1994 .

[27]  Koichi Yamada,et al.  Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes , 1996 .

[28]  A. Mcevoy,et al.  A study on the La1 − xSrxMnO3 oxygen cathode , 1996 .

[29]  M. Ippommatsu,et al.  High Performance Solid Oxide Fuel Cell Cathode Fabricated by Electrochemical Vapor Deposition , 1994 .

[30]  A. Hammouche,et al.  Impedance spectroscopy analysis of La1 − xSritxMnO3-yttria-stabilized zirconia electrode kinetics , 1995 .

[31]  Tohru Kato,et al.  Oxygen Transport at the LaMnO3 Film/Yttria-Stabilized Zirconia Interface under Different Cathodic Overpotentials by Secondary Ion Mass Spectrometry , 2001 .