Construction of bacterial artificial chromosome library from electrochemical microorganisms.

[1]  L. Stookey Ferrozine---a new spectrophotometric reagent for iron , 1970 .

[2]  S. Vartivarian,et al.  Extracellular iron reductases: identification of a new class of enzymes by siderophore-producing microorganisms. , 1999, Archives of biochemistry and biophysics.

[3]  Byung Hong Kim,et al.  Cloning, Sequencing and Functional Expression in Escherichia coli of dmc Gene Encoding Periplasmic Tetraheme Cytochrome c3from Desulphovibrio desulphuricans M6 , 2001 .

[4]  E. Delong,et al.  Isolation of anaerobic respiratory mutants of Shewannella putrefaciens and genetic analysis of mutants deficient in anaerobic growth on Fe3+ , 1994, Journal of bacteriology.

[5]  Byung Hong Kim,et al.  A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens , 2002 .

[6]  A. Beliaev,et al.  MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR‐1 , 2001, Molecular microbiology.

[7]  H. Bürgmann,et al.  A strategy for optimizing quality and quantity of DNA extracted from soil. , 2001, Journal of microbiological methods.

[8]  Kelly P. Nevin,et al.  Dissimilatory Fe(III) and Mn(IV) reduction. , 1991, Advances in microbial physiology.

[9]  J. Handelsman,et al.  Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Park,et al.  Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore , 2000, Applied and Environmental Microbiology.

[11]  Byung Hong Kim,et al.  A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell , 2001 .

[12]  E. Roden,et al.  Recovery of Humic-Reducing Bacteria from a Diversity of Environments , 1998, Applied and Environmental Microbiology.

[13]  C. Myers,et al.  Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1 , 1993 .

[14]  S. Giovannoni,et al.  Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals , 2004, Archives of Microbiology.

[15]  Ralf Cord-Ruwisch,et al.  A Periplasmic and Extracellular c-Type Cytochrome ofGeobacter sulfurreducens Acts as a Ferric Iron Reductase and as an Electron Carrier to Other Acceptors or to Partner Bacteria , 1998, Journal of bacteriology.

[16]  C. Myers,et al.  Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by Shewanella putrefaciens MR‐1 , 1993 .

[17]  K. Nealson,et al.  Microbial reduction of manganese and iron: new approaches to carbon cycling , 1992, Applied and environmental microbiology.

[18]  K. Straub,et al.  Iron metabolism in anoxic environments at near neutral pH. , 2001, FEMS microbiology ecology.

[19]  Dianne K. Newman,et al.  A role for excreted quinones in extracellular electron transfer , 2000, Nature.

[20]  K. Nealson,et al.  Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. , 1994, Annual review of microbiology.

[21]  G. Gil,et al.  Operational parameters affecting the performannce of a mediator-less microbial fuel cell. , 2003, Biosensors & bioelectronics.