Structural Features of a 3′ Splice Site in Influenza A

Influenza A is an RNA virus with a genome of eight negative sense segments. Segment 7 mRNA contains a 3′ splice site for alternative splicing to encode the essential M2 protein. On the basis of sequence alignment and chemical mapping experiments, the secondary structure surrounding the 3′ splice site has an internal loop, adenine bulge, and hairpin loop when it is in the hairpin conformation that exposes the 3′ splice site. We report structural features of a three-dimensional model of the hairpin derived from nuclear magnetic resonance spectra and simulated annealing with restrained molecular dynamics. Additional insight was provided by modeling based on 1H chemical shifts. The internal loop containing the 3′ splice site has a dynamic guanosine and a stable imino (cis Watson–Crick/Watson–Crick) GA pair. The adenine bulge also appears to be dynamic with the A either stacked in the stem or forming a base triple with a Watson–Crick GC pair. The hairpin loop is a GAAA tetraloop closed by an AC pair.

[1]  M. Disney,et al.  A toxic RNA catalyzes the in cellulo synthesis of its own inhibitor. , 2014, Angewandte Chemie.

[2]  V. Ricotti,et al.  Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study , 2014, The Lancet Neurology.

[3]  Walter N. Moss,et al.  Secondary Structure of a Conserved Domain in an Intron of Influenza A M1 mRNA , 2014, Biochemistry.

[4]  A. Pyle,et al.  Principles of ion recognition in RNA: insights from the group II intron structures , 2014, RNA.

[5]  D. Hughes,et al.  Large-scale analysis of influenza A virus nucleoprotein sequence conservation reveals potential drug-target sites. , 2014, Virology.

[6]  Brian R. McNaughton,et al.  Synthetic RNA recognition motifs that selectively recognize HIV-1 trans-activation response element hairpin RNA. , 2014, ACS chemical biology.

[7]  D. Turner,et al.  Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts , 2014, Nature Methods.

[8]  M. Disney,et al.  Promoter-Bound Trinucleotide Repeat mRNA Drives Epigenetic Silencing in Fragile X Syndrome , 2014, Science.

[9]  R. Sigel,et al.  NMR structure of the 5′ splice site in the group IIB intron Sc.ai5γ—conformational requirements for exon–intron recognition , 2014, RNA.

[10]  G. Varani,et al.  A novel small-molecule binds to the influenza A virus RNA promoter and inhibits viral replication. , 2014, Chemical communications.

[11]  M. Disney Rational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts. , 2013, Drug discovery today.

[12]  A. Stelzer,et al.  Prediction of RNA 1H and 13C chemical shifts: a structure based approach. , 2013, The journal of physical chemistry. B.

[13]  Walter N. Moss,et al.  Secondary Structure of a Conserved Domain in the Intron of Influenza A NS1 mRNA , 2013, PloS one.

[14]  S. Wijmenga,et al.  Nucleic acid helix structure determination from NMR proton chemical shifts , 2013, Journal of biomolecular NMR.

[15]  I. Andricioaei,et al.  Utility of 1H NMR chemical shifts in determining RNA structure and dynamics. , 2013, The journal of physical chemistry. B.

[16]  Brian D. Weitzner,et al.  Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE) , 2013, PloS one.

[17]  M. Disney,et al.  Small-molecule-mediated cleavage of RNA in living cells. , 2013, Angewandte Chemie.

[18]  Bruce A. Johnson,et al.  Database proton NMR chemical shifts for RNA signal assignment and validation , 2012, Journal of Biomolecular NMR.

[19]  J. Puglisi,et al.  RNA purification by preparative polyacrylamide gel electrophoresis. , 2013, Methods in enzymology.

[20]  R. Green,et al.  In vitro transcription from plasmid or PCR-amplified DNA. , 2013, Methods in enzymology.

[21]  Andrew E. Firth,et al.  Edinburgh Research Explorer Identification of a novel splice variant form of the influenza a virus m2 ion channel with an antigenically distinct ectodomain , 2022 .

[22]  A. Pyle,et al.  Visualizing Group II Intron Catalysis through the Stages of Splicing , 2012, Cell.

[23]  R. Sigel,et al.  Unusually High‐Affinity Mg2+ Binding at the AU‐Rich Sequence within the Antiterminator Hairpin of a Mg2+ Riboswitch , 2012, Chemistry & biodiversity.

[24]  Walter N. Moss,et al.  The 3′ Splice Site of Influenza A Segment 7 mRNA Can Exist in Two Conformations: A Pseudoknot and a Hairpin , 2012, PloS one.

[25]  R. Olsthoorn,et al.  The subgenomic promoter of brome mosaic virus folds into a stem-loop structure capped by a pseudo-triloop that is structurally similar to the triloop of the genomic promoter. , 2012, RNA.

[26]  E. Akl,et al.  Antivirals for Treatment of Influenza , 2012, Annals of Internal Medicine.

[27]  Jesse Stombaugh,et al.  Comprehensive survey and geometric classification of base triples in RNA structures , 2011, Nucleic acids research.

[28]  Nicholas S. Kelley,et al.  Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. , 2012, The Lancet. Infectious diseases.

[29]  D. Turner,et al.  NMR structure of a 4 x 4 nucleotide RNA internal loop from an R2 retrotransposon: identification of a three purine-purine sheared pair motif and comparison to MC-SYM predictions. , 2011, RNA.

[30]  Ian R Kleckner,et al.  An introduction to NMR-based approaches for measuring protein dynamics. , 2011, Biochimica et biophysica acta.

[31]  I. Andricioaei,et al.  Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. , 2011, Nature chemical biology.

[32]  Walter N. Moss,et al.  Identification of potential conserved RNA secondary structure throughout influenza A coding regions. , 2011, RNA.

[33]  G. van Ommen,et al.  Systemic administration of PRO051 in Duchenne's muscular dystrophy. , 2011, The New England journal of medicine.

[34]  J. Boisbouvier,et al.  NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site , 2011, Nucleic acids research.

[35]  R. Garten,et al.  Dual resistance to adamantanes and oseltamivir among seasonal influenza A(H1N1) viruses: 2008-2010. , 2011, The Journal of infectious diseases.

[36]  Mirko Cevec,et al.  NMR structure of the let-7 miRNA interacting with the site LCS1 of lin-41 mRNA from Caenorhabditis elegans , 2010, Nucleic acids research.

[37]  Anitha Rao,et al.  RNA-Based Gene Therapy for HIV with Lentiviral Vector–Modified CD34+ Cells in Patients Undergoing Transplantation for AIDS-Related Lymphoma , 2010, Science Translational Medicine.

[38]  T. James,et al.  RNA structural motifs that entail hydrogen bonds involving sugar-phosphate backbone atoms of RNA. , 2010, New journal of chemistry = Nouveau journal de chimie.

[39]  Harry A. Stern,et al.  Reparameterization of RNA χ Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine , 2010, Journal of chemical theory and computation.

[40]  J Andrew Berglund,et al.  Role of RNA structure in regulating pre-mRNA splicing. , 2010, Trends in biochemical sciences.

[41]  Yoko Shibata,et al.  Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. , 2010, RNA.

[42]  S. L. Lam,et al.  Use of chemical shifts for structural studies of nucleic acids. , 2010, Progress in nuclear magnetic resonance spectroscopy.

[43]  David H. Mathews,et al.  NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure , 2009, Nucleic Acids Res..

[44]  Erin Burns,et al.  Estimates of deaths associated with seasonal influenza --- United States, 1976-2007. , 2010, MMWR. Morbidity and mortality weekly report.

[45]  D. Turner,et al.  Effects of Restrained Sampling Space and Nonplanar Amino Groups on Free-Energy Predictions for RNA with Imino and Sheared Tandem GA Base Pairs Flanked by GC, CG, iGiC or iCiG Base Pairs , 2009, Journal of chemical theory and computation.

[46]  J Andrew Berglund,et al.  The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing , 2009, Proceedings of the National Academy of Sciences.

[47]  Lynnette Brammer,et al.  Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States. , 2009, JAMA.

[48]  K. Zanier,et al.  A NMR strategy to unambiguously distinguish nucleic acid hairpin and duplex conformations applied to a Xist RNA A-repeat , 2008, Nucleic acids research.

[49]  A. Pyle,et al.  Structural basis for exon recognition by a group II intron , 2008, Nature Structural &Molecular Biology.

[50]  Nicole M. Bouvier,et al.  The biology of influenza viruses. , 2008, Vaccine.

[51]  Takeshi Wada,et al.  Modified Uridines with C5-methylene Substituents at the First Position of the tRNA Anticodon Stabilize U·G Wobble Pairing during Decoding* , 2008, Journal of Biological Chemistry.

[52]  Lukasz Popenda,et al.  Bulged adenosine influence on the RNA duplex conformation in solution. , 2008, Biochemistry.

[53]  Oliver F. Lange,et al.  Consistent blind protein structure generation from NMR chemical shift data , 2008, Proceedings of the National Academy of Sciences.

[54]  Janez Plavec,et al.  Solution structure of a let-7 miRNA:lin-41 mRNA complex from C. elegans , 2008, Nucleic acids research.

[55]  S. Grimes,et al.  Analysis of intermolecular base pair formation of prohead RNA of the phage ø29 DNA packaging motor using NMR spectroscopy , 2007, Nucleic acids research.

[56]  Marek Blazewicz,et al.  RNA FRABASE version 1.0: an engine with a database to search for the three-dimensional fragments within RNA structures , 2007, Nucleic Acids Res..

[57]  RNA Structure Modulates Splicing Efficiency at the Human Immunodeficiency Virus Type 1 Major Splice Donor , 2007, Journal of Virology.

[58]  S. Joseph,et al.  Decoding Center of the 30s Ribosomal Subunit Structures of Trnas with an Expanded Anticodon Loop in the References Structures of Trnas with an Expanded Anticodon Loop in the Decoding Center of the 30s Ribosomal Subunit , 2007 .

[59]  D. Turner,et al.  The NMR structure of an internal loop from 23S ribosomal RNA differs from its structure in crystals of 50s ribosomal subunits. , 2006, Biochemistry.

[60]  Zhihua Du,et al.  NMR Structure of the Full-length Linear Dimer of Stem-Loop-1 RNA in the HIV-1 Dimer Initiation Site*♦ , 2006, Journal of Biological Chemistry.

[61]  Qi Zhang,et al.  Resolving the Motional Modes That Code for RNA Adaptation , 2006, Science.

[62]  R. Padgett,et al.  Structure of a self-splicing group II intron catalytic effector domain 5: parallels with spliceosomal U6 RNA. , 2005, RNA.

[63]  M. Selmer,et al.  Crystal Structures of the Ribosome in Complex with Release Factors RF1 and RF2 Bound to a Cognate Stop Codon , 2005, Cell.

[64]  Thomas A Steitz,et al.  Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. , 2005, Molecular cell.

[65]  M. Hennig,et al.  A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  L. Scott,et al.  RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. , 2005, Journal of molecular biology.

[67]  Keiji Fukuda,et al.  Influenza-associated hospitalizations in the United States. , 2004, JAMA.

[68]  W. B. Arendall,et al.  RNA backbone is rotameric , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  H. Schwalbe,et al.  NMR Spectroscopy of RNA , 2003, Chembiochem : a European journal of chemical biology.

[70]  Jerzy Leszczynski,et al.  Unique tertiary and neighbor interactions determine conservation patterns of Cis Watson-Crick A/G base-pairs. , 2003, Journal of molecular biology.

[71]  S. Baigent,et al.  Influenza type A in humans, mammals and birds: determinants of virus virulence, host-range and interspecies transmission. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[72]  David E Draper,et al.  A thermodynamic framework for the magnesium-dependent folding of RNA. , 2003, Biopolymers.

[73]  K. Swinger,et al.  Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 A resolution. , 2003, RNA.

[74]  Dipali G. Sashital,et al.  Structural basis for a lethal mutation in U6 RNA. , 2003, Biochemistry.

[75]  The solution structure of the loop E region of the 5S rRNA from spinach chloroplasts. , 2003, Journal of molecular biology.

[76]  Eric Westhof,et al.  The non-Watson-Crick base pairs and their associated isostericity matrices. , 2002, Nucleic acids research.

[77]  D. Turner,et al.  Molecular recognition by the Candida albicans group I intron: tertiary interactions with an imino G.A pair facilitate binding of the 5' exon and lower the KM for guanosine. , 2002, Biochemistry.

[78]  M. Kainosho,et al.  Structural features of an influenza virus promoter and their implications for viral RNA synthesis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[79]  S. Wijmenga,et al.  Prediction of proton chemical shifts in RNA – Their use in structure refinement and validation , 2001, Journal of biomolecular NMR.

[80]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[81]  T. Dieckmann,et al.  A pH controlled conformational switch in the cleavage site of the VS ribozyme substrate RNA. , 2001, Journal of molecular biology.

[82]  D H Turner,et al.  Thermodynamics of RNA internal loops with a guanosine-guanosine pair adjacent to another noncanonical pair. , 2001, Biochemistry.

[83]  V. DeRose,et al.  Metal interactions with a GAAA RNA tetraloop characterized by (31)P NMR and phosphorothioate substitutions. , 2000, Biochemistry.

[84]  E. L. Holbrook,et al.  The crystal structure of the Rev binding element of HIV-1 reveals novel base pairing and conformational variability. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[85]  I. Tinoco,et al.  Solution structure of Cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches. , 2000, Journal of molecular biology.

[86]  D. Patel,et al.  Adaptive recognition by nucleic acid aptamers. , 2000, Science.

[87]  J. Šponer,et al.  Structure, Energetics, and Dynamics of the Nucleic Acid Base Pairs: Nonempirical ab initio Calculations , 2000 .

[88]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[89]  P Hobza,et al.  Structure, energetics, and dynamics of the nucleic Acid base pairs: nonempirical ab initio calculations. , 1999, Chemical reviews.

[90]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[91]  C. W. Hilbers,et al.  Structure of the 3′‐hairpin of the TYMV pseudoknot: preformation in RNA folding , 1998, The EMBO journal.

[92]  D. Turner,et al.  Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. , 1998, Biochemistry.

[93]  I. Tinoco,et al.  RNA folding causes secondary structure rearrangement. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[94]  D. Draper,et al.  On the role of magnesium ions in RNA stability , 1998, Biopolymers.

[95]  P. Moore,et al.  The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins. , 1997, Structure.

[96]  S. Wijmenga,et al.  Analysis of 1H chemical shifts in DNA: Assessment of the reliability of 1H chemical shift calculations for use in structure refinement , 1997, Journal of biomolecular NMR.

[97]  A. Pardi,et al.  Unusual dynamics and pKa shift at the active site of a lead dependent ribozyme , 1997 .

[98]  D. Turner,et al.  Solution structure of (rGGCAGGCC)2 by two-dimensional NMR and the iterative relaxation matrix approach. , 1996, Biochemistry.

[99]  H. Heus,et al.  A network of heterogeneous hydrogen bonds in GNRA tetraloops. , 1996, Journal of molecular biology.

[100]  L. Kay,et al.  α Helix-RNA Major Groove Recognition in an HIV-1 Rev Peptide-RRE RNA Complex , 1996, Science.

[101]  Gabriele Varani,et al.  NMR investigation of RNA structure , 1996 .

[102]  D. Patel,et al.  Solution structure of the donor site of a trans-splicing RNA. , 1996, Structure.

[103]  I. Tinoco,et al.  Solution structure of loop A from the hairpin ribozyme from tobacco ringspot virus satellite. , 1996, Biochemistry.

[104]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[105]  K. Weeks,et al.  Assembly of a Ribonucleoprotein Catalyst by Tertiary Structure Capture , 1996, Science.

[106]  G. Steger,et al.  Description of RNA folding by "simulated annealing". , 1996, Journal of molecular biology.

[107]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[108]  B. Ravi,et al.  NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures , 1995, Comput. Appl. Biosci..

[109]  A. Pardi,et al.  GNRA tetraloops make a U-turn. , 1995, RNA.

[110]  S. Grzesiek,et al.  The Importance of Not Saturating H2o in Protein NMR : application to Sensitivity Enhancement and Noe Measurements , 1993 .

[111]  D. Turner,et al.  Structure of (rGGCGAGCC)2 in solution from NMR and restrained molecular dynamics. , 1993, Biochemistry.

[112]  Z. Dominski,et al.  Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[113]  K. Severinov,et al.  Histidine-tagged RNA polymerase: dissection of the transcription cycle using immobilized enzyme. , 1993, Gene.

[114]  S. Smallcombe Solvent suppression with symmetrically-shifted pulses , 1993 .

[115]  V. Saudek,et al.  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions , 1992, Journal of biomolecular NMR.

[116]  D. Crothers,et al.  RNA recognition by Tat-derived peptides: Interaction in the major groove? , 1991, Cell.

[117]  J. Valcárcel,et al.  Regulated M1 mRNA splicing in influenza virus-infected cells. , 1991, The Journal of general virology.

[118]  Novel proton NMR assignment procedure for RNA duplexes , 1991 .

[119]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[120]  I. Tinoco,et al.  Solution conformation of an RNA hairpin loop. , 1990, Biochemistry.

[121]  K. Hall,et al.  Structure of a pre-mRNA branch point/3' splice site region. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[122]  O. Uhlenbeck,et al.  Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. , 1987, Nucleic acids research.

[123]  A. Bax,et al.  Spin-echo water suppression for the generation of pure-phase two-dimensional NMR spectra , 1987 .

[124]  D. Turner,et al.  Sequence dependence for the energetics of dangling ends and terminal base pairs in ribonucleic acid. , 1987, Biochemistry.

[125]  Douglas H. Turner,et al.  Effects of 3' dangling end stacking on the stability of GGCC and CCGG double helixes , 1983 .

[126]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[127]  R. Lamb,et al.  Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[128]  K Wüthrich,et al.  A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. , 1980, Biochemical and biophysical research communications.