Existence of global solutions of a macroscopic model of cellular motion in a chemotactic field

Abstract Existence of global classical solutions of a class of reaction–diffusion systems with chemotactic terms is demonstrated. This class contains a system of equations derived recently as a continuous limit of the stochastic discrete cellular Potts model. This provides mathematical justification for using numerical solutions of this system for modeling cellular motion in a chemotactic field.

[1]  W. Alt Biased random walk models for chemotaxis and related diffusion approximations , 1980, Journal of mathematical biology.

[2]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[3]  Hans G. Othmer,et al.  Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[4]  Thomas Hillen,et al.  Classical solutions and pattern formation for a volume filling chemotaxis model. , 2007, Chaos.

[5]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[6]  Herbert Amann,et al.  Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems , 1990, Differential and Integral Equations.

[7]  Herbert Amann,et al.  Dynamic theory of quasilinear parabolic systems , 1990 .

[8]  Mark Alber,et al.  Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .

[10]  Dorothee D. Haroske,et al.  Function spaces, differential operators and nonlinear analysis , 1993 .

[11]  D. Wrzosek Model of chemotaxis with threshold density and singular diffusion , 2010 .

[12]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[13]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[14]  Leo P. Kadanoff,et al.  Diffusion, attraction and collapse , 1999 .