Permanence and global stability for cooperative Lotka-Volterra diffusion systems

[1]  J. Cowan,et al.  Some mathematical questions in biology , 1974 .

[2]  Klaus Schmitt,et al.  Persistence in models of predator-prey populations with diffusion , 1986 .

[3]  Peter Schuster,et al.  Dynamical systems under constant organiza-tion III: Cooperative and competitive behaviour of hypercy , 1979 .

[4]  F. Rothe Convergence to the equilibrium state in the Volterra-Lotka diffusion equations , 1976, Journal of mathematical biology.

[5]  B. Goh,et al.  Management and analysis of biological populations , 1982 .

[6]  J. G. Skellam Random dispersal in theoretical populations , 1951, Biometrika.

[7]  J. F. Selgrade On the existence and uniqueness of connecting orbits , 1983 .

[8]  Y. Takeuchi,et al.  Conflict between the need to forage and the need to avoid competition: persistence of two-species model. , 1990, Mathematical biosciences.

[9]  R. Redheffer,et al.  A theorem of La Salle-Lyapunov type for parabolic systems , 1988 .

[10]  Anthony W. Leung,et al.  Limiting behaviour for a prey-predator model with diffusion and crowding effects , 1978 .

[11]  Thomas G. Hallam,et al.  Persistence in food webs—I Lotka-Volterra food chains , 1979 .

[12]  Zhou Zhiming,et al.  Global asymptotic stability for a class of many-variable volterra prey-predator systems☆ , 1981 .

[13]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[14]  A. Hastings Global stability in Lotka-Volterra systems with diffusion , 1978 .

[15]  Paul Waltman,et al.  Uniformly persistent systems , 1986 .

[16]  P. Chow,et al.  Nonlinear reaction-diffusion models for interacting populations , 1978 .

[17]  James A. Yorke,et al.  Numerically determining solutions of systems of polynomial equations , 1988 .

[18]  Hal L. Smith Cooperative systems of differential equations with concave nonlinearities , 1986 .

[19]  H. I. Freedman,et al.  Persistence in models of three interacting predator-prey populations , 1984 .

[20]  G. T. Vickers,et al.  A criterion for permanent coexistence of species, with an application to a two-prey one-predator system , 1983 .

[21]  M. Hirsch Systems of di erential equations which are competitive or cooperative I: limit sets , 1982 .

[22]  Cooperative Systems Theory and Global Stability of Diffusion Models , 1989 .

[23]  E. Beretta A homotopy technique for a linear generalization of volterra models , 1989 .

[24]  H. I. Freedman,et al.  Persistence in a model of three competitive populations , 1985 .

[25]  Y. Takeuchi,et al.  Global Asymptotic Stability of Lotka–Volterra Diffusion Models with Continuous Time Delay , 1988 .

[26]  Hal L. Smith On the asymptotic behavior of a class of deterministic models of cooperating species , 1986 .

[27]  M. Hirsch Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere , 1985 .

[28]  E. Kamke Zur Theorie der Systeme gewöhnlicher Differentialgleichungen. II. , 1932 .

[29]  Yasuhiro Takeuchi,et al.  Global stability in generalized Lotka-Volterra diffusion systems , 1986 .

[30]  Coexistence of any number of species in the Lotka-Volterra competitive system over two-patches , 1990 .

[31]  S. Levin Dispersion and Population Interactions , 1974, The American Naturalist.

[32]  Lu Zhengyi On the LaSalle's invariant set for five-dimensional Lotka-Volterra prey-predator chain systems , 1989 .

[33]  B. Goh Global Stability in Many-Species Systems , 1977, The American Naturalist.

[34]  K. Kishimoto,et al.  Stable spatio-temporal oscillations of diffusive Lotka-Volterra system with three or more species , 1983 .

[35]  James F. Selgrade,et al.  Asymptotic behavior of solutions to single loop positive feedback systems , 1980 .

[36]  Y. Takeuchi,et al.  The stability of generalized Volterra equations , 1978 .

[37]  Y Takeuchi Diffusion-mediated persistence in two-species competition Lotka-Volterra model. , 1989, Mathematical biosciences.

[38]  K. Kishimoto The diffusive Lotka-Volterra system with three species can have a stable non-constant equilibrium solution , 1982 .