The prediction of the wild-type telomerase RNA pseudoknot structure and the pivotal role of the bulge in its formation.

[1]  Jiunn-Liang Chen,et al.  Functional analysis of the pseudoknot structure in human telomerase RNA. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Chanock,et al.  Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. , 2005, The New England journal of medicine.

[3]  G. Varani,et al.  The structure of an enzyme-activating fragment of human telomerase RNA. , 2005, RNA.

[4]  Yaroslava G. Yingling,et al.  Dynamic behavior of the telomerase RNA hairpin structure and its relationship to dyskeratosis congenita. , 2005, Journal of molecular biology.

[5]  C. A. Theimer,et al.  Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. , 2005, Molecular cell.

[6]  M. Cerone,et al.  Telomerase RNA Mutated in Autosomal Dyskeratosis Congenita Reconstitutes a Weakly Active Telomerase Enzyme Defective in Telomere Elongation , 2005, Cell cycle.

[7]  Mira Abraham,et al.  A universal telomerase RNA core structure includes structured motifs required for binding the telomerase reverse transcriptase protein. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Jiunn-Liang Chen,et al.  Telomerase RNA structure and function: implications for dyskeratosis congenita. , 2004, Trends in biochemical sciences.

[9]  Charles L. Brooks,et al.  Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures , 2004, J. Comput. Chem..

[10]  E. Blackburn,et al.  Comprehensive Structure-Function Analysis of the Core Domain of Human Telomerase RNA , 2003, Molecular and Cellular Biology.

[11]  C. A. Theimer,et al.  Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Ivan Smirnov,et al.  A molecular switch underlies a human telomerase disease , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Shay,et al.  Telomerase: a target for cancer therapeutics. , 2002, Cancer cell.

[14]  J. F. Atkins,et al.  Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site. , 2002, RNA.

[15]  C. Brooks,et al.  Novel generalized Born methods , 2002 .

[16]  Charles D Schwieters,et al.  Theoretical and computational advances in biomolecular NMR spectroscopy. , 2002, Current opinion in structural biology.

[17]  Tamás Kiss,et al.  Analysis of the structure of human telomerase RNA in vivo. , 2002, Nucleic acids research.

[18]  Richard Lavery,et al.  Simulations of nucleic acids and their complexes. , 2002, Accounts of chemical research.

[19]  M. Sundaralingam,et al.  Crystal structure of an RNA duplex r(gugucgcac)(2) with uridine bulges. , 2001, Journal of Molecular Biology.

[20]  T. Vulliamy,et al.  The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita , 2001, Nature.

[21]  M Feig,et al.  Conformations of an adenine bulge in a DNA octamer and its influence on DNA structure from molecular dynamics simulations. , 2001, Biophysical journal.

[22]  Richard A. Friesner,et al.  Solvent models for protein–ligand binding: Comparison of implicit solvent poisson and surface generalized born models with explicit solvent simulations , 2001, J. Comput. Chem..

[23]  E. Westhof,et al.  Geometric nomenclature and classification of RNA base pairs. , 2001, RNA.

[24]  M. Blasco,et al.  Identification of Functional Domains and Dominant Negative Mutations in Vertebrate Telomerase RNA Using an in VivoReconstitution System* , 2001, The Journal of Biological Chemistry.

[25]  D. Case,et al.  Continuum solvent molecular dynamics study of flexibility in interleukin-8. , 2001, Journal of molecular graphics & modelling.

[26]  Junmei Wang,et al.  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000, J. Comput. Chem..

[27]  M. Zacharias Simulation of the structure and dynamics of nonhelical RNA motifs. , 2000, Current opinion in structural biology.

[28]  Jiunn-Liang Chen,et al.  Secondary Structure of Vertebrate Telomerase RNA , 2000, Cell.

[29]  D. Patel,et al.  RNA bulges as architectural and recognition motifs. , 2000, Structure.

[30]  E Westhof,et al.  Non-Watson-Crick base pairs in RNA-protein recognition. , 1999, Chemistry & biology.

[31]  E. Blackburn,et al.  The telomerase RNA pseudoknot is critical for the stable assembly of a catalytically active ribonucleoprotein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Jörg Weiser,et al.  Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO) , 1999, J. Comput. Chem..

[33]  J. Apostolakis,et al.  Comparison of a GB Solvation Model with Explicit Solvent Simulations: Potentials of Mean Force and Conformational Preferences of Alanine Dipeptide and 1,2-Dichloroethane , 1998 .

[34]  E Westhof,et al.  Simulations of the molecular dynamics of nucleic acids. , 1998, Current opinion in structural biology.

[35]  Peter A. Kollman,et al.  Molecular dynamics simulations highlight the structural differences among DNA: DNA, RNA:RNA, and DNA:RNA hybrid duplexes , 1997 .

[36]  C. Autexier,et al.  Telomerase and cancer: revisiting the telomere hypothesis. , 1996, Trends in biochemical sciences.

[37]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[38]  et al.,et al.  The RNA component of human telomerase , 1995, Science.

[39]  P. Hagerman,et al.  Bulge-induced bends in RNA: quantification by transient electric birefringence. , 1995, Journal of molecular biology.

[40]  M. Singh,et al.  HIV‐1 tat protein stimulates transcription by binding to a U‐rich bulge in the stem of the TAR RNA structure. , 1990, The EMBO journal.

[41]  C R Woese,et al.  Evidence for several higher order structural elements in ribosomal RNA. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R Lavery,et al.  The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. , 1988, Journal of biomolecular structure & dynamics.

[43]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[44]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[45]  J. Shay,et al.  Telomerase in cancer and aging. , 2002, Critical reviews in oncology/hematology.

[46]  P A Kollman,et al.  Molecular dynamics simulation of nucleic acids. , 2000, Annual review of physical chemistry.

[47]  D. Case,et al.  Generalized born models of macromolecular solvation effects. , 2000, Annual review of physical chemistry.

[48]  T. Cheatham,et al.  Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise * , 2000, Biopolymers.

[49]  D. Case,et al.  Theory and applications of the generalized born solvation model in macromolecular simulations , 2000, Biopolymers.

[50]  C. W. Hilbers,et al.  New developments in structure determination of pseudoknots , 1998, Biopolymers.

[51]  P A Kollman,et al.  Continuum solvent studies of the stability of RNA hairpin loops and helices. , 1998, Journal of biomolecular structure & dynamics.

[52]  W. Saenger Why Study Nucleotide and Nucleic Acid Structure , 1984 .