Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian.

[1]  Debashree Ghosh,et al.  A study of cumulant approximations to n-electron valence multireference perturbation theory. , 2009, The Journal of chemical physics.

[2]  Toru Shiozaki,et al.  Communication: Second-order multireference perturbation theory with explicit correlation: CASPT2-F12. , 2010, The Journal of chemical physics.

[3]  Stephen D. Wilson,et al.  Frontiers in Quantum Systems in Chemistry and Physics , 2008 .

[4]  Guido Fano,et al.  Quantum chemistry using the density matrix renormalization group , 2001 .

[5]  K. Hilpert,et al.  Determination of the Dissociation Energy of the Cr2 Molecule , 1987 .

[6]  William A. Goddard,et al.  GVB–RP: A reliable MCSCF wave function for large systems , 1999 .

[7]  Markus Reiher,et al.  New electron correlation theories for transition metal chemistry. , 2011, Physical chemistry chemical physics : PCCP.

[8]  P. Armentrout,et al.  The bond energies of Cr2 and Cr+2 , 1993 .

[9]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[10]  Thomas Müller,et al.  Large-scale parallel uncontracted multireference-averaged quadratic coupled cluster: the ground state of the chromium dimer revisited. , 2009, The journal of physical chemistry. A.

[11]  Feng Xu,et al.  Geminal model chemistry. IV. Variational and size consistent pure spin states. , 2007, The Journal of chemical physics.

[12]  Francesco A Evangelista,et al.  An orbital-invariant internally contracted multireference coupled cluster approach. , 2011, The Journal of chemical physics.

[13]  Garnet Kin-Lic Chan,et al.  Strongly contracted canonical transformation theory. , 2010, The Journal of chemical physics.

[14]  Wilfried Meyer,et al.  Configuration Expansion by Means of Pseudonatural Orbitals , 1977 .

[15]  R. Shepard Hamiltonian matrix and reduced density matrix construction with nonlinear wave functions. , 2006, The journal of physical chemistry. A.

[16]  Per E. M. Siegbahn,et al.  Direct configuration interaction with a reference state composed of many reference configurations , 1980 .

[17]  M. Reiher,et al.  Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters. , 2008, The Journal of chemical physics.

[18]  J. Cullen,et al.  Generalized valence bond solutions from a constrained coupled cluster method , 1996 .

[19]  Laura Gagliardi,et al.  The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. , 2008, The Journal of chemical physics.

[20]  Garnet Kin-Lic Chan,et al.  Canonical transformation theory for multireference problems. , 2006, The Journal of chemical physics.

[21]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[22]  Björn O. Roos,et al.  Excitation energies in the nickel atom studied with the complete active space SCF method and second-order perturbation theory , 1992 .

[23]  Toru Shiozaki,et al.  Explicitly correlated multireference configuration interaction: MRCI-F12. , 2011, The Journal of chemical physics.

[24]  Edward F. Valeev,et al.  Universal perturbative explicitly correlated basis set incompleteness correction. , 2009, The Journal of chemical physics.

[25]  Martin Head-Gordon,et al.  The perfect quadruples model for electron correlation in a valence active space. , 2009, The Journal of chemical physics.

[26]  B. Roos,et al.  A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2) , 2004 .

[27]  Garnet Kin-Lic Chan,et al.  Approximating strongly correlated wave functions with correlator product states , 2009, 0907.4646.

[28]  D Porras,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[29]  Nevin Horace Oliphant,et al.  A multireference coupled-cluster method using a single-reference formalism. , 1991 .

[30]  Marcel Nooijen,et al.  Obtaining the two-body density matrix in the density matrix renormalization group method. , 2008, The Journal of chemical physics.

[31]  M. Nooijen,et al.  A state-specific partially internally contracted multireference coupled cluster approach. , 2011, The Journal of chemical physics.

[32]  Mark R. Hoffmann,et al.  A unitary multiconfigurational coupled‐cluster method: Theory and applications , 1988 .

[33]  Hans-Joachim Werner,et al.  The self‐consistent electron pairs method for multiconfiguration reference state functions , 1982 .

[34]  Haruyuki Nakano,et al.  Quasidegenerate perturbation theory with multiconfigurational self‐consistent‐field reference functions , 1993 .

[35]  Mihály Kállay,et al.  A general state-selective multireference coupled-cluster algorithm , 2002 .

[36]  Marcel Nooijen,et al.  The density matrix renormalization group self-consistent field method: orbital optimization with the density matrix renormalization group method in the active space. , 2008, The Journal of chemical physics.

[37]  J. M. Ugalde,et al.  Complete vs Restricted Active Space Perturbation Theory Calculation of the Cr2 Potential Energy Surface. , 2011, Journal of chemical theory and computation.

[38]  R. Cimiraglia,et al.  n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants , 2002 .

[39]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[40]  Ernest R. Davidson,et al.  Size consistency in the dilute helium gas electronic structure , 1977 .

[41]  Kimihiko Hirao,et al.  Quasi‐degenerate perturbation theory with general multiconfiguration self‐consistent field reference functions , 2002, J. Comput. Chem..

[42]  T. Voorhis,et al.  Implementation of generalized valence bond-inspired coupled cluster theories , 2002 .

[43]  Goddard,et al.  Modified generalized valence-bond method: A simple correction for the electron correlation missing in generalized valence-bond wave functions; Prediction of double-well states for Cr2 and Mo2. , 1985, Physical review letters.

[44]  R. Cimiraglia,et al.  New perspectives in multireference perturbation theory: the n-electron valence state approach , 2007 .

[45]  G. Scuseria,et al.  Diatomic chromium (Cr2): application of the coupled cluster method including all single and double excitation (CCSD) , 1990 .

[46]  Hermann Stoll,et al.  The Cr2 potential curve: a multireference pair functional treatment , 1996 .

[47]  An efficient recursive algorithm to compute wave function optimization gradients for the graphically contracted function method , 2010 .

[48]  Jürgen Gauss,et al.  State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve. , 2004, The Journal of chemical physics.

[49]  B. Simard,et al.  Photoionization spectroscopy of dichromium and dimolybdenum: Ionization potentials and bond energies , 1998 .

[50]  Garnet Kin-Lic Chan,et al.  An algorithm for large scale density matrix renormalization group calculations. , 2004, The Journal of chemical physics.

[51]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[52]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[53]  M. Head‐Gordon,et al.  Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group , 2002 .

[54]  Rodney J. Bartlett,et al.  Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI , 1993 .

[55]  Garnet Kin-Lic Chan,et al.  Quadratic canonical transformation theory and higher order density matrices. , 2009, The Journal of chemical physics.

[56]  Harry Partridge,et al.  Cr 2 revisited , 1994 .

[57]  S. Ten-no A simple F12 geminal correction in multi-reference perturbation theory , 2007 .

[58]  S. Casey,et al.  Negative ion photoelectron spectroscopy of Cr2 , 1993 .

[59]  Andreas Köhn,et al.  Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. , 2011, The Journal of chemical physics.

[60]  Markus P. Fülscher,et al.  Multiconfigurational perturbation theory: Applications in electronic spectroscopy , 1996 .

[61]  William A. Goddard,et al.  Self‐Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2 , 1972 .

[62]  Legeza,et al.  Accuracy of the density-matrix renormalization-group method. , 1996, Physical review. B, Condensed matter.

[63]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[64]  K. Andersson,et al.  THE CR2 POTENTIAL ENERGY CURVE STUDIED WITH MULTICONFIGURATIONAL SECOND-ORDER PERTURBATION THEORY , 1994 .

[65]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[66]  Björn O. Roos,et al.  Multiconfigurational perturbation theory with level shift — the Cr2 potential revisited , 1995 .

[67]  Garnet Kin-Lic Chan,et al.  Exact solution (within a triple-zeta, double polarization basis set) of the electronic Schrödinger equation for water , 2003 .

[68]  F. Verstraete,et al.  Complete-graph tensor network states: a new fermionic wave function ansatz for molecules , 2010, 1004.5303.

[69]  P. Knowles,et al.  An efficient method for the evaluation of coupling coefficients in configuration interaction calculations , 1988 .

[70]  Marcel Nooijen,et al.  On the spin and symmetry adaptation of the density matrix renormalization group method. , 2008, The Journal of chemical physics.

[71]  Per-Åke Malmqvist,et al.  Multiconfiguration perturbation theory with imaginary level shift , 1997 .

[72]  T. Yanai,et al.  High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds. , 2009, The Journal of chemical physics.

[73]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[74]  Robert J. Buenker,et al.  Individualized configuration selection in CI calculations with subsequent energy extrapolation , 1974 .

[75]  Shuhua Li Block-correlated coupled cluster theory: the general formulation and its application to the antiferromagnetic Heisenberg model. , 2004, The Journal of chemical physics.

[76]  Robert J. Harrison,et al.  Multireference Configuration Interaction Calculations on Cr2: Passing the One Billion Limit in MRCI/MRACPF Calculations , 1999 .

[77]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[78]  Debashree Ghosh,et al.  Orbital optimization in the density matrix renormalization group, with applications to polyenes and beta-carotene. , 2007, The Journal of chemical physics.

[79]  A general nonlinear expansion form for electronic wave functions. , 2005, The journal of physical chemistry. A.

[80]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[81]  S. Rommer,et al.  CLASS OF ANSATZ WAVE FUNCTIONS FOR ONE-DIMENSIONAL SPIN SYSTEMS AND THEIR RELATION TO THE DENSITY MATRIX RENORMALIZATION GROUP , 1997 .

[82]  Richard L. Martin,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998 .

[83]  Garnet Kin-Lic Chan,et al.  Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory. , 2010, The Journal of chemical physics.

[84]  P. Knowles,et al.  The CIPT2 method: Coupling of multi-reference configuration interaction and multi-reference perturbation theory. Application to the chromium dimer , 2004 .

[85]  Kerstin Andersson,et al.  Different forms of the zeroth-order Hamiltonian in second-order perturbation theory with a complete active space self-consistent field reference function , 1995 .

[86]  Alistair P. Rendell,et al.  The restricted active space self-consistent-field method, implemented with a split graph unitary group approach , 1990 .

[87]  Garnet Kin-Lic Chan,et al.  Canonical transformation theory from extended normal ordering. , 2007, The Journal of chemical physics.

[88]  Garnet Kin-Lic Chan,et al.  A review of canonical transformation theory , 2010 .

[89]  Bernd A. Hess,et al.  Revision of the Douglas-Kroll transformation. , 1989, Physical review. A, General physics.

[90]  G. Chan,et al.  Chapter 7 The Density Matrix Renormalization Group in Quantum Chemistry , 2009 .

[91]  John A. Parkhill,et al.  A truncation hierarchy of coupled cluster models of strongly correlated systems based on perfect-pairing references: the singles+doubles models. , 2010, The Journal of chemical physics.

[92]  B. Roos The Ground State Potential for the Chromium Dimer Revisited , 2003 .

[93]  Emily A. Carter,et al.  Multi-reference weak pairs local configuration interaction: efficient calculations of bond breaking , 2001 .

[94]  Hans-Joachim Werner,et al.  Multireference perturbation theory for large restricted and selected active space reference wave functions , 2000 .

[95]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[96]  Debashree Ghosh,et al.  Accelerating convergence in iterative solution for large-scale complete active space self-consistent-field calculations , 2009 .

[97]  T. Yanai,et al.  Communication: Novel quantum states of electron spins in polycarbenes from ab initio density matrix renormalization group calculations. , 2010, The Journal of chemical physics.

[98]  Celestino Angeli,et al.  Third-order multireference perturbation theory: the n-electron valence state perturbation-theory approach. , 2006, The Journal of chemical physics.

[99]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[100]  B. Roos,et al.  A simple method for the evaluation of the second-order-perturbation energy from external double-excitations with a CASSCF reference wavefunction , 1982 .

[101]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[102]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[103]  J. English,et al.  Electronic structure and vibrational frequency of Cr2 , 1983 .

[104]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[105]  Ajit Banerjee,et al.  Applications of multiconfigurational coupled‐cluster theory , 1982 .

[106]  Kimihiko Hirao,et al.  Multireference Møller-Plesset method , 1992 .

[107]  S. White Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.