Spectral emissivity measurements of Mercury's surface indicate Mg- and Ca-rich mineralogy, K-spar, Na-rich plagioclase, rutile, with possible perovskite, and garnet

Mid-infrared 2-D spectroscopic measurements from 8.0 to 12.7 gm of Mercury were taken using Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, 7-11 April 2006. Measurements reported here cover radar bright region C, a dark plains region west of Caloris Basin, and the interior of Caloris Basin. By use of spectral deconvolution with a large spectral library composed of many mineral compositions and grain size separates, we fitted, or "unmixed", the Mercury spectra. We find mineral suites composed of magnesium-rich orthopyroxene and olivine, Ca-, Mg-, Na-rich clinopyroxene, potassium feldspar, and Na-bearing plagioclase feldspar. Both Ca- and Mg-rich garnet (pyrope and grossular, respectively) are apparently present in small amounts. Opaque minerals are required for spectral matching, with rutile (TiO2) repeatedly providing the "best fit". However, in the case of the radar bright region C, perovskite also contributed to a very good fit. Caloris Basin infill is rich in both potassium feldspar and Na-rich plagioclase. There is little or no olivine in the Caloris interior smooth plains. Together with the high alkali content, this indicates that resurfacing magmas were low to intermediate in SiO2. Data suggest the dark plains exterior to Caloris are highly differentiated low-iron basaltic magmas resulting in material that might be classified as oligorclase basalts. (C) 2009 Elsevier Ltd. All rights reserved

[1]  Jesse D. Bregman,et al.  Spectral Irradiance Calibration in the Infrared.IV. 1.2-35 micron spectra of six standard stars , 1995 .

[2]  Dale P. Cruikshank,et al.  Mercury's feldspar connection mid-ir measurements suggest plagioclase , 1997 .

[3]  V. Hamilton Thermal infrared emission spectroscopy of titanium-enriched pyroxenes , 2003 .

[4]  Carle M. Pieters,et al.  An experimental approach to understanding the optical effects of space weathering , 2007 .

[5]  D. Muhleman,et al.  Mercury Radar Imaging: Evidence for Polar Ice , 1992, Science.

[6]  Robert G. Strom,et al.  Tectonism and volcanism on Mercury , 1975 .

[7]  D. Hunten,et al.  Caloris Basin: An Enhanced Source for Potassium in Mercury's Atmosphere , 1990, Science.

[8]  Uwe Fink,et al.  Distribution and Abundance of Sodium in Mercury's Atmosphere, 1985–1988 , 1997 .

[9]  A. Potter,et al.  Discovery of Sodium in the Atmosphere of Mercury , 1985, Science.

[10]  E. Tollestrup,et al.  MIRSI, A Mid-Infrared Spectrometer and Imager: Performance Results from the IRTF , 2008 .

[11]  Ted L. Roush,et al.  Comparison of Laboratory Emission Spectra with Mercury Telescopic Data , 1998 .

[12]  J. Mustard,et al.  Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .

[13]  Alessandro Maturilli,et al.  Emissivity measurements of analogue materials for the interpretation of data from PFS on Mars Express and MERTIS on Bepi-Colombo , 2006 .

[14]  Johan Warell,et al.  The 0.7–5.3 μm IR spectra of Mercury and the Moon: Evidence for high-Ca clinopyroxene on Mercury , 2006 .

[15]  G. Toon The JPL MkIV interferometer , 1991 .

[16]  Gretchen Benedix,et al.  Spectra of extremely reduced assemblages: Implications for Mercury , 2002 .

[17]  H. J. Melosh,et al.  The tectonics of Mercury , 1988 .

[18]  Patrick Moore,et al.  The atlas of Mercury , 1977 .

[19]  S. Solomon,et al.  Pit-floor craters on Mercury: Evidence of near-surface igneous activity , 2009 .

[20]  T. H. Morgan,et al.  Potassium in the atmosphere of Mercury , 1986 .

[21]  Faith Vilas,et al.  Surface composition of Mercury from reflectance spectrophotometry , 1988 .

[22]  Clark R. Chapman,et al.  Geology of the Caloris Basin, Mercury: A View from MESSENGER , 2008, Science.

[23]  A. Sprague,et al.  Mercury: Evidence for Anorthosite and Basalt from Mid-infrared (7.3-13.5 μm) Spectroscopy , 1994 .

[24]  M. Ramsey,et al.  Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .

[25]  Alessandro Maturilli,et al.  Mercury: Mg-rich mineralogy with K-spar and garnet , 2008 .

[26]  R. Goldstein Mercury: Surface Features Observed during Radar Studies , 1970, Science.

[27]  Alessandro Maturilli,et al.  The Berlin emissivity database (BED) , 2008 .

[28]  Radar Observations of Mercury. , 1971, Science.

[29]  Joseph L. Hora,et al.  MIRSI: a Mid-InfraRed Spectrometer and Imager , 2000, SPIE Astronomical Telescopes + Instrumentation.

[30]  J. Head,et al.  Mercury: Radar images of the equatorial and midlatitude zones , 2007 .

[31]  John W. Salisbury,et al.  Midinfrared (2.5–13.5 μm) reflectance spectra of powdered stony meteorites , 1991 .

[32]  S. E. Hawkins,et al.  Reflectance and Color Variations on Mercury: Regolith Processes and Compositional Heterogeneity , 2008, Science.

[33]  M. Zuber,et al.  Return to Mercury: A Global Perspective on MESSENGER's First Mercury Flyby , 2008, Science.

[34]  D. Mitchell,et al.  Microwave Imaging of Mercury's Thermal Emission at Wavelengths from 0.3 to 20.5 cm , 1994 .

[35]  D. Tody,et al.  IRAF in the Nineties , 1992 .

[36]  Harald Hiesinger,et al.  The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission , 2010 .

[37]  Larry A. Lebofsky,et al.  Determination of rock type on Mercury and the Moon through remote sensing in the thermal infrared , 1988 .

[38]  Fred C. Witteborn,et al.  Mercury: Thermal Modeling and Mid-infrared (5–12 μm) Observations☆ , 1998 .

[39]  P. Christensen,et al.  Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks , 1999 .

[40]  F. J. Turner,et al.  Petrography: An Introduction to the Study of Rocks in Thin Section , 1954 .

[41]  P. Christensen,et al.  Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .

[42]  L. Berry,et al.  Mineralogy: Concepts, Descriptions, Determinations , 1983 .

[43]  W. Benz,et al.  The Origin of Mercury , 2007 .

[44]  A. G. W. Cameron,et al.  The partial volatilization of Mercury , 1985 .

[45]  Bradley G. Henderson,et al.  Near‐surface thermal gradients and mid‐IR emission spectra: A new model including scattering and application to real data , 1995 .

[46]  Johannes Benkhoff,et al.  BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals , 2010 .

[47]  Lawrence A. Taylor,et al.  Resources for a lunar base: Rocks, minerals, and soil of the Moon , 1992 .

[48]  Bonnie L. Cooper,et al.  Midinfrared spectra of Mercury , 2001 .

[49]  Jeffrey R. Johnson,et al.  Visible/near-infrared spectra of experimentally shocked plagioclase feldspars , 2003 .

[50]  S. Murchie,et al.  Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains , 2009 .

[51]  D. A. Howard,et al.  A thermal emission spectral library of rock-forming minerals , 2000 .

[52]  E. Roedder :Petrography: An Introduction to the Study of Rocks in Thin Sections , 1984 .

[53]  Carle M. Pieters,et al.  RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility , 2004 .

[54]  John W. Salisbury,et al.  Infrared reflectance spectra (2.2–15 μm) of plagioclase feldspars , 1991 .

[55]  P. Christensen,et al.  Plagioclase compositions derived from thermal emission spectra of compositionally complex mixtures: Implications for Martian feldspar mineralogy , 2007 .

[56]  Paul G. Lucey,et al.  Thermal Infrared Spectroscopy of Experimentally Shocked Anorthosite and Pyroxenite , 2002 .

[57]  S. Hook,et al.  Laboratory Reflectance Spectra of 160 Minerals, 0.4 to 2.5 Micrometers , 1992 .

[58]  J. Salisbury,et al.  Thermal‐infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements , 1993 .

[59]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[60]  Jesse D. Bregman,et al.  Spectral Irradiance Calibration in the Infrared , 2011 .

[61]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[62]  Johan Warell,et al.  Mercury and the Moon: Initial Findings from Mid-Infrared Spectroscopic Measurements of the Surface , 2007 .

[63]  G. Gloeckler,et al.  MESSENGER Observations of the Composition of Mercury's Ionized Exosphere and Plasma Environment , 2008, Science.

[64]  Martin G. Cohen,et al.  Spectral Irradiance Calibration in the Infrared.VII.New Composite Spectra, Comparison with Model Atmospheres, and Far-Infrared Extrapolations , 1996 .

[65]  K. D. Hanna,et al.  Vesta and the HED meteorites: Mid‐infrared modeling of minerals and their abundances , 2009 .

[66]  H. McSween,et al.  Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy , 1997 .

[67]  Graham R. Hunt,et al.  Emission spectra of particulate silicates under simulated lunar conditions , 1970 .

[68]  Alessandro Maturilli,et al.  The Planetary Emissivity Laboratory (PEL) at DLR, Berlin , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[69]  Martin A. Slade,et al.  Mercury: Full-disk radar images and the detection and stability of ice at the North Pole , 1993 .

[70]  Audouin Dollfus,et al.  Optical polarimetry of planet mercury , 1974 .

[71]  S. Murchie,et al.  Spectroscopic Observations of Mercury's Surface Reflectance During MESSENGER's First Mercury Flyby , 2008, Science.

[72]  R. Jeanloz,et al.  Evidence for a basalt-free surface on Mercury and implications for internal heat. , 1995, Science.

[73]  R. J. Floran,et al.  Mineralogy, petrology, and trace element geochemistry of the Johnstown meteorite: a brecciated orthopyroxenite with siderophile and REE-rich components , 1981 .

[74]  K. Keil,et al.  Recognizing mercurian meteorites , 1995 .

[75]  Clark R. Chapman,et al.  Mercury Cratering Record Viewed from MESSENGER's First Flyby , 2008, Science.

[76]  Joseph D. Adams,et al.  Mid-infrared emission at photodissociation regions in the orion nebula , 2006 .

[77]  David K. Lynch,et al.  Mercury: Mid‐infrared (3–13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene , 2002 .

[78]  J. Harmon Mercury radar studies and lunar comparisons , 1997 .

[79]  Willy Benz,et al.  Collisional stripping of Mercury's mantle , 1988 .

[80]  JOHN S. Lewis Physics And Chemistry Of The Solar System , 1995 .

[81]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[82]  D. B. Nash,et al.  Infrared reflectance spectra (4–12 µm) of typical lunar samples , 1991 .

[83]  Johan Warell,et al.  Properties of the Hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modelling , 2004 .

[84]  Johan Warell,et al.  A set of laboratory analogue materials for the MERTIS instrument on the ESA BepiColombo mission to Mercury , 2006 .

[85]  E. Gibson Production of simple molecules on the surface of Mercury , 1977 .

[86]  S. Taylor Planetary science: A lunar perspective , 1982 .

[87]  P. Christensen,et al.  Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy , 2000 .