Indexing Spatio-Temporal Trajectories with Efficient Polynomial Approximations

Complex queries on trajectory data are increasingly common in applications involving moving objects. MBR or grid-cell approximations on trajectories perform suboptimally since they do not capture the smoothness and lack of internal area of trajectories. We describe a parametric space indexing method for historical trajectory data, approximating a sequence of movement functions with single continuous polynomial. Our approach works well, yielding much finer approximation quality than MBRs. We present the PA-tree, a parametric index that uses this method, and show through extensive experiments that PA-trees have excellent performance for offline and online spatio-temporal range queries. Compared to MVR-trees, PA-trees are an order of magnitude faster to construct and incur I/O cost for spatio-temporal range queries lower by a factor of 2-4. SETI is faster than our method for index construction and timestamp queries, but incurs twice the I/O cost for time interval queries, which are much more expensive and are the bottleneck in online processing. Therefore, the PA-tree is an excellent choice for both offline and online processing of historical trajectories

[1]  Marios Hadjieleftheriou,et al.  SaIL: A Spatial Index Library for Efficient Application Integration , 2005, GeoInformatica.

[2]  Dimitris Papadias,et al.  Slot Index Spatial Join , 2003, IEEE Trans. Knowl. Data Eng..

[3]  Nick Roussopoulos,et al.  SEB-tree: An Approach to Index Continuously Moving Objects , 2003, Mobile Data Management.

[4]  Dimitrios Gunopulos,et al.  Efficient Indexing of Spatiotemporal Objects , 2002, EDBT.

[5]  Christos Faloutsos,et al.  Designing Access Methods for Bitemporal Databases , 1998, IEEE Trans. Knowl. Data Eng..

[6]  Yufei Tao,et al.  Query Processing in Spatial Network Databases , 2003, VLDB.

[7]  Dimitrios Gunopulos,et al.  Indexing Animated Objects Using Spatiotemporal Access Methods , 2001, IEEE Trans. Knowl. Data Eng..

[8]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[9]  F. Warren Burton,et al.  Implementation of Overlapping B-Trees for Time and Space Efficient Representation of Collections of Similar Files , 1990, Comput. J..

[10]  Yufei Tao,et al.  MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries , 2001, VLDB.

[11]  Christos Faloutsos,et al.  Analysis of object oriented spatial access methods , 1987, SIGMOD '87.

[12]  Chinya V. Ravishankar,et al.  PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories , 2005, SSTD.

[13]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[14]  Mario A. Nascimento,et al.  Towards historical R-trees , 1998, SAC '98.

[15]  Ming-Ling Lo,et al.  The Design and Implementation of Seeded Trees: An Efficient Method for Spatial Joins , 1998, IEEE Trans. Knowl. Data Eng..

[16]  Christos Faloutsos,et al.  Beyond uniformity and independence: analysis of R-trees using the concept of fractal dimension , 1994, PODS.

[17]  Oscar H. Ibarra,et al.  Trajectory queries and octagons in moving object databases , 2002, CIKM '02.

[18]  Jignesh M. Patel,et al.  Indexing Large Trajectory Data Sets With SETI , 2003, CIDR.

[19]  Yufei Tao,et al.  Cost models for overlapping and multiversion structures , 2002, TODS.

[20]  Jimeng Sun,et al.  The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive Queries , 2003, VLDB.

[21]  Timos K. Sellis,et al.  Spatio-temporal indexing for large multimedia applications , 1996, Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems.

[22]  Dimitrios Gunopulos,et al.  Indexing Spatio-temporal Archives , 2008, Encyclopedia of GIS.

[23]  Dimitrios Gunopulos,et al.  On indexing mobile objects , 1999, PODS '99.

[24]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[25]  Dimitrios Gunopulos,et al.  Indexing spatiotemporal archives , 2006, The VLDB Journal.

[26]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[27]  Raymond T. Ng,et al.  Indexing spatio-temporal trajectories with Chebyshev polynomials , 2004, SIGMOD '04.

[28]  Jörg Sander,et al.  A Trajectory Splitting Model for Efficient Spatio-Temporal Indexing , 2005, VLDB.

[29]  Sharad Mehrotra,et al.  Querying Mobile Objects in Spatio-Temporal Databases , 2001, SSTD.

[30]  Timos K. Sellis,et al.  A model for the prediction of R-tree performance , 1996, PODS.

[31]  Christos Faloutsos,et al.  Prediction and indexing of moving objects with unknown motion patterns , 2004, SIGMOD '04.

[32]  Bruce L. Worthington,et al.  Windows 2000 Disk IO Performance , 2000 .

[33]  Thomas Brinkhoff,et al.  Generating network-based moving objects , 2000, Proceedings. 12th International Conference on Scientific and Statistica Database Management.

[34]  Chinya V. Ravishankar,et al.  Roads, codes, and spatiotemporal queries , 2004, PODS.

[35]  Jignesh M. Patel,et al.  STRIPES: an efficient index for predicted trajectories , 2004, SIGMOD '04.