A quantum dynamical study of CH overtones in fluoroform. I. A nine‐dimensional ab initio surface, vibrational spectra and dynamics

In this series, the characteristics of intramolecular vibrational‐energy redistribution (IVR) present in the CH overtones of CHF3 are investigated. Particular attention is given to the multiple time scales and thus mechanisms present in the IVR dynamics. In Part I, a 9‐dimensional ab initio potential energy surface is developed to adequately account for the vibrational couplings of all modes. Furthermore, all‐mode vibrational state calculations, of large primitive space dimension, are performed using a recently developed wave operator sorting algorithm in tandem with the recursive residue generation method. All fundamentals, first overtones, and bimodal combination states with up to 3 quanta are presented. Also, the A1 and E‐symmetry CH polyads are determined through the second overtone. Equilibrium geometry, rotational constants, and vibrational properties agree quantitatively with experiment in most cases. The error is systematic in origin and largely due to the error in the ab initio harmonic frequenci...

[1]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[2]  A. Zewail,et al.  The highly excited C–H stretching states of CHD3, CHT3, and CH3D , 1984 .

[3]  W. Green,et al.  Kinetic anharmonic coupling in the trihalomethanes: A mechanism for rapid intramolecular redistribution of CH stretch vibrational energy , 1987 .

[4]  A vibrational study of the CD3H molecule in the curvilinear formulation , 1991 .

[5]  M. Quack,et al.  Tridiagonal Fermi resonance structure in the IR spectrum of the excited CH chromophore in CF3H , 1984 .

[6]  N. Oberhofer,et al.  The 3←0 CH stretch overtone of benzene: An optothermal study , 1991 .

[7]  T. A. Zang,et al.  Spectral Methods for Partial Differential Equations , 1984 .

[8]  P. Bunker,et al.  Molecular symmetry and spectroscopy , 1979 .

[9]  H. Bürger,et al.  Schwingungsspektren und kraftkonstanten symmetrischer kreisel—III: Die IR-spektren von HCF3 und DCF3 , 1971 .

[10]  Lorenz S. Cederbaum,et al.  Multimode Molecular Dynamics Beyond the Born‐Oppenheimer Approximation , 2007 .

[11]  M. Quack,et al.  High-resolution IR spectrum of fluoroform: a close resonance , 1981 .

[12]  Andr'e Nauts,et al.  New Approach to Many-State Quantum Dynamics: The Recursive-Residue-Generation Method , 1983 .

[13]  D. Nesbitt,et al.  High‐resolution, slit jet infrared spectroscopy of hydrocarbons: Quantum state specific mode mixing in CH stretch‐excited propyne , 1989 .

[14]  R. Wyatt,et al.  Quantum dynamics of overtone relaxation in benzene. V. CH(v=3) dynamics computed with a new ab initio force field , 1993 .

[15]  W. Miller,et al.  Theories of intramolecular vibrational energy transfer , 1991 .

[16]  A. Zewail,et al.  Direct picosecond time resolution of dissipative intramolecular vibrational-energy redistribution (IVR) in isolated molecules , 1984 .

[17]  Y. Shen,et al.  Local modes of benzene and benzene dimer, studied by infrared–ultraviolet double resonance in a supersonic beam , 1988 .

[18]  Kevin M. Dunn,et al.  Vibrational energy levels of methyl fluoride , 1987 .

[19]  B. Henry Use of local modes in the description of highly vibrationally excited molecules , 1977 .

[20]  N. Handy,et al.  The accurate calculation of molecular properties by ab initio methods , 1988 .

[21]  A. Zewail,et al.  Dynamics of intramolecular vibrational‐energy redistribution (IVR). IV. Excess energy dependence, t‐stilbene , 1985 .

[22]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[23]  G. T. Fraser,et al.  Molecular beam spectrum of the highly perturbed C–H stretching region of fluoroform , 1988 .

[24]  K. Freed,et al.  Intramolecular vibrational energy redistribution and the time evolution of molecular fluorescence , 1980 .

[25]  R. Wyatt,et al.  Wave operator and artificial intelligence contraction algorithms in quantum dynamics: Application to CD3H and C6H6 , 1993 .

[26]  T. Rizzo,et al.  ROTATIONAL STATE-SELECTED VIBRATIONAL OVERTONE SPECTROSCOPY OF JET-COOLED MOLECULES , 1995 .

[27]  Martin Quack,et al.  Spectra and Dynamics of Coupled Vibrations in Polyatomic Molecules , 1990 .

[28]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[29]  A. Zewail,et al.  High‐energy overtone spectroscopy of some deuterated methanes , 1985 .

[30]  P. Löwdin Studies in perturbation theory XIII. Treatment of constants of motion in resolvent method, partitioning technique, and perturbation theory , 1968 .

[31]  K. Kawaguchi,et al.  Measurement and Analysis of the ν4 Band of Fluoroform and Its Molecular Constants , 1981 .

[32]  Jean-Paul Malrieu,et al.  Intermediate Hamiltonians as a new class of effective Hamiltonians , 1985 .

[33]  P. Taylor,et al.  An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers , 1995 .

[34]  Michael J. Davis,et al.  Molecular spectra, Fermi resonances, and classical motion , 1980 .

[35]  H. J. Bernstein,et al.  Rotation‐Vibration Spectra of Diatomic and Simple Polyatomic Molecules with Long Absorbing Paths. I. The Spectrum of Fluoroform (CHF3) from 2.4μ to 0.7μ , 1948 .

[36]  Wyatt Matrix spectroscopy: Computation of interior eigenstates of large matrices using layered iteration. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  K. Lehmann,et al.  The high‐resolution visible overtone spectrum of CH4 and CD3H at 77 K , 1984 .

[38]  J. Kauppinen,et al.  High-resolution infrared spectrum of the v 3 and v 6 bands of HCF3 and of their hot bands , 1979 .

[39]  R. Kirk,et al.  The general harmonic force field of fluoroform , 1975 .

[40]  M. Quack,et al.  Vibrational spectrum, dipole moment function, and potential energy surface of the CH chromophore in CHX3 molecules , 1989 .

[41]  J. Reilly,et al.  The vibrational overtone spectrum of fluoroform in the Δν=4 CH stretching region , 1994 .

[42]  Stationary and time-dependent wave-operator formulation in molecular dynamics , 1991 .

[43]  R. Marcus,et al.  Theoretical study of intramolecular vibrational relaxation of acetylenic CH vibration for v=1 and 2 in large polyatomic molecules (CX3)3YCCH, where X=H or D and Y=C or Si , 1993 .

[44]  Pavel Rosmus,et al.  PNO–CI and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first‐row and second‐row diatomic hydrides , 1975 .

[45]  S. Kondo,et al.  Ab initio MO calculation of the anharmonic force field of methyl fluoride and methyl chloride , 1984 .

[46]  J. S. Wong,et al.  Coupling of CH stretching and bending vibrations in trihalomethanes , 1987 .

[47]  G. Guelachvili,et al.  Fluoroform: The polyad at 8–9 μm , 1984 .

[48]  M. Quack,et al.  OVERTONE INTENSITIES AND DIPOLE MOMENT SURFACES FOR THE ISOLATED CH CHROMOPHORE IN CHD3 AND CHF3 : EXPERIMENT AND AB INITIO THEORY , 1990 .

[49]  C. Bloch,et al.  Sur la théorie des perturbations des états liés , 1958 .

[50]  J. Baggott,et al.  Overtone band shapes and IVR: C–H stretch overtones in CHCl3 , 1986 .

[51]  J. Santamaria,et al.  Stretch-bend coupling effect on the intramolecular vibrational relaxation in a two-mode model of CH overtone excited fluoroform , 1990 .

[52]  Ian M. Mills,et al.  Anharmonic force constant calculations , 1972 .

[53]  F. Stoeckel,et al.  Highly excited vibrational states of CHF3 and CHD3 in the range of the vs=5 CH chromophore , 1986 .

[54]  W. Reinhardt,et al.  Intramolecular vibrational relaxation and spectra of CH and CD overtones in benzene and perdeuterobenzene , 1984 .

[55]  S. Kato Intramolecular vibrational energy redistribution in CHCl3: A theoretical analysis , 1985 .

[56]  K. Holtzclaw,et al.  Chemical timing 3. The picosecond dynamics of intramolecular vibrational redistribution from 11 levels in S1p‐difluorobenzene vapor , 1986 .

[57]  N. Handy,et al.  On the necessity of f basis functions for bending frequencies , 1988 .

[58]  T. Carrington,et al.  Fermi resonance in CHX3: a Hamiltonian in symmetrized curvilinear internal coordinates , 1987 .

[59]  N. Handy,et al.  On the high accuracy of mp2-optimised geometmes and harmonic frequencies with large basis sets , 1987 .

[60]  W. Green,et al.  Anharmonic vibrational properties of CH2F2 : A comparison of theory and experiment , 1991 .

[61]  P. Lockett,et al.  Rotational analysis of ?6 of DCF3 and ?3 + ?6 of HCF3 , 1974 .

[62]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[63]  D. Luckhaus,et al.  The role of potential anisotropy in the dynamics of the CH chromophore in CHX3 (C3v) symmetric tops , 1993 .

[64]  Ingvar Lindgren,et al.  The Rayleigh-Schrodinger perturbation and the linked-diagram theorem for a multi-configurational model space , 1974 .

[65]  C. Leforestier,et al.  Intramolecular vibrational energy redistribution in the CD3H molecule , 1992 .

[66]  R. Zare,et al.  Tridiagonal Fermi resonance structure in the vibrational spectrum of the CH chromophore in CHF3. II. Visible spectra , 1987 .

[67]  J. D. Cloizeaux Extension d'une formule de Lagrange à des problèmes de valeurs propres , 1960 .