Computational study of capacitively coupled high-pressure glow discharges in helium

The structure of a capacitively coupled high-pressure glow (HPG) discharge in high-purity helium is investigated using a detailed one-dimensional modeling approach. Impurity effects are modeled using trace amounts of nitrogen gas in helium. Average electron temperatures and densities for the HPG discharge are similar to their low-pressure counterpart. Helium-dimer ions dominate the discharge structure for sufficiently high-current densities, but model impurity nitrogen ions are found to be dominant for low-discharge currents. Helium dimer metastable atoms are found to be the dominant metastable species in the discharge. The high collisionality of the HPG plasma results in significant discharge potential drop across the bulk plasma region, electron Joule heating in the bulk plasma, and electron elastic collisional losses. High collisionality also results in very low ion-impact energies of order 1 eV at the electrode surfaces.

[1]  Erich E. Kunhardt,et al.  Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas , 2000 .

[2]  A. Serafetinides,et al.  Stable discharges in an HF laser with large electrode seperation , 1978 .

[3]  R. Vidmar,et al.  On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers , 1990 .

[4]  M. Moisan,et al.  Multitube surface-wave discharges for increased gas throughput at atmospheric pressure , 1998 .

[5]  N. Gherardi,et al.  A new approach to SiO2 deposit using a N2-SiH4-N2O glow dielectric barrier-controlled discharge at atmospheric pressure , 2000 .

[6]  Choong-Seock Chang,et al.  An atmospheric pressure plasma source , 2000 .

[7]  Masuhiro Kogoma,et al.  Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source , 1993 .

[8]  Jaeyoung Park,et al.  Gas Breakdown in an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source , 2001 .

[9]  Richard N. Zare,et al.  Ionization mechanisms in two-temperature air plasmas , 1999 .

[10]  Competitive effects of dipolar interactions and a bias magnetic field on the magnetic relaxation times of Co clusters , 2003 .

[11]  J. Roth,et al.  A remote exposure reactor (RER) for plasma processing and sterilization by plasma active species at one atmosphere , 2000 .

[12]  Xiaohui Yuan,et al.  Role of trace impurities in large-volume noble gas atmospheric-pressure glow discharges , 2002 .

[13]  Mark J. Kushner,et al.  Microarcs as a Termination Mechanism of Optical Pulses in Electric-Discharge-Excited , 1991 .

[14]  C. Mayoux,et al.  Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier , 1998 .

[15]  G. Gouda,et al.  A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure , 1998 .

[16]  J. Forster,et al.  Ion kinetics in low-pressure, electropositive, RF glow discharge sheaths , 1991 .

[17]  M. Kushner,et al.  Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model , 1992 .

[18]  Robert J. Kee,et al.  A FORTRAN COMPUTER CODE PACKAGE FOR THE EVALUATION OF GAS-PHASE, MULTICOMPONENT TRANSPORT PROPERTIES , 1986 .

[19]  D. J. Economou,et al.  Fluid simulations of glow discharges: Effect of metastable atoms in argon , 1993 .

[20]  Edward A. Mason,et al.  Transport Properties of Gaseous Ions over a Wide Energy Range , 1976 .

[21]  A. J. Beaulieu,et al.  TRANSVERSELY EXCITED ATMOSPHERIC PRESSURE CO2 LASERS , 1970 .

[22]  Jaeyoung Park,et al.  ETCHING POLYIMIDE WITH A NONEQUILIBRIUM ATMOSPHERIC-PRESSURE PLASMA JET , 1999 .

[23]  M. Kushner,et al.  Excitation mechanisms and gain modeling of the high‐pressure atomic Ar laser in He/Ar mixtures , 1994 .

[24]  M. Riley,et al.  Dynamics of collisionless rf plasma sheaths , 1997 .

[25]  A. Napartovich,et al.  Numerical simulation and experimental study of an atmospheric-pressure direct-current glow discharge , 1994 .

[26]  Jaeyoung Park,et al.  Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source , 2001 .

[27]  H. Fleischmann,et al.  Experimental studies of high‐power microwave reflection, transmission, and absorption from a plasma‐covered plane conducting boundary , 1991 .

[28]  S. Rauf,et al.  Dynamics of a coplanar-electrode plasma display panel cell. I. Basic operation , 1999 .

[29]  L. Raja,et al.  Analytical model for ion angular distribution functions at rf biased surfaces with collisionless plasma sheaths , 2002 .

[30]  Robert C. Brown,et al.  Simulation of electric field effects in premixed methane flames , 1993 .

[31]  Masuhiro Kogoma,et al.  Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure , 1994 .

[32]  M. Kogoma,et al.  Synthesis of plasma-polymerized tetraethoxysilane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge , 1995 .

[33]  U. Kortshagen,et al.  Radial structure of a low-frequency atmospheric-pressure glow discharge in helium , 2002 .

[34]  M. Meyyappan,et al.  One-Dimensional Modeling Studies of the Gaseous Electronics Conference RF Reference Cell , 1995, Journal of research of the National Institute of Standards and Technology.

[35]  M. Surendra,et al.  Particle simulations of radio-frequency glow discharges , 1991 .

[36]  R. Pantel,et al.  Production and Applications of Microwave Surface Wave Plasma at Atmospheric Pressure , 1979 .

[37]  Masuhiro Kogoma,et al.  Stable glow plasma at atmospheric pressure , 1988 .

[38]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[39]  W. Byszewski Diffuse discharges at high‐current density , 1989 .

[40]  Jaeyoung Park,et al.  The atmospheric-pressure plasma jet: a review and comparison to other plasma sources , 1998 .