Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq

The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a reference atlas created a resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions.

[1]  Yi Zhang,et al.  Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity. , 2017, Cell reports.

[2]  E. Yaksi,et al.  Spontaneous Activity Governs Olfactory Representations in Spatially Organized Habenular Microcircuits , 2014, Current Biology.

[3]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[4]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[5]  Masahiko Watanabe,et al.  Cbln1 is essential for synaptic integrity and plasticity in the cerebellum , 2005, Nature Neuroscience.

[6]  Alex A. Pollen,et al.  Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex , 2014, Nature Biotechnology.

[7]  O. Hikosaka The habenula: from stress evasion to value-based decision-making , 2010, Nature Reviews Neuroscience.

[8]  M. Halpern,et al.  Left Habenular Activity Attenuates Fear Responses in Larval Zebrafish , 2017, Current Biology.

[9]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[10]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[11]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[12]  S. Ben-Dor,et al.  Neurokinin Bs and neurokinin B receptors in zebrafish-potential role in controlling fish reproduction , 2012, Proceedings of the National Academy of Sciences.

[13]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[14]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[15]  E. Yaksi,et al.  Information processing in the vertebrate habenula. , 2017, Seminars in cell & developmental biology.

[16]  Hongkui Zeng,et al.  Neuronal cell-type classification: challenges, opportunities and the path forward , 2017, Nature Reviews Neuroscience.

[17]  Gregory D. Marquart,et al.  High precision registration between zebrafish brain atlases using symmetric diffeomorphic normalization , 2016, bioRxiv.

[18]  S. Ogawa,et al.  Cloning and expression of kiss2 in the zebrafish and medaka. , 2009, Endocrinology.

[19]  William E. Allen,et al.  Ancestral Circuits for the Coordinated Modulation of Brain State , 2017, Cell.

[20]  Claire Wyart,et al.  Cholinergic left-right asymmetry in the habenulo-interpeduncular pathway , 2013, Proceedings of the National Academy of Sciences.

[21]  S. Higashijima,et al.  Social conflict resolution regulated by two dorsal habenular subregions in zebrafish , 2016, Science.

[22]  Hanlee P. Ji,et al.  Haplotyping germline and cancer genomes using high-throughput linked-read sequencing , 2015, Nature Biotechnology.

[23]  Gonçalo Lopes,et al.  Development of social behaviour in young zebrafish , 2015, bioRxiv.

[24]  Jens Hjerling-Leffler,et al.  Disentangling neural cell diversity using single-cell transcriptomics , 2016, Nature Neuroscience.

[25]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[26]  G. W. Milligan,et al.  A Study of the Comparability of External Criteria for Hierarchical Cluster Analysis. , 1986, Multivariate behavioral research.

[27]  James E. Fitzgerald,et al.  Whole-brain activity mapping onto a zebrafish brain atlas , 2015, Nature Methods.

[28]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression data , 2015 .

[29]  Hitoshi Okamoto,et al.  Identification of the Zebrafish Ventral Habenula As a Homolog of the Mammalian Lateral Habenula , 2010, The Journal of Neuroscience.

[30]  Emmanuel Mignot,et al.  Sleep–wake regulation and hypocretin–melatonin interaction in zebrafish , 2009, Proceedings of the National Academy of Sciences.

[31]  S. Ryu,et al.  Habenula Circuit Development: Past, Present, and Future , 2012, Front. Neurosci..

[32]  Torsten Rohlfing,et al.  Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees , 2003, IEEE Transactions on Information Technology in Biomedicine.

[33]  Alex A. Pollen,et al.  Molecular Identity of Human Outer Radial Glia during Cortical Development , 2015, Cell.

[34]  S. Higashijima,et al.  The Habenulo-Raphe Serotonergic Circuit Encodes an Aversive Expectation Value Essential for Adaptive Active Avoidance of Danger , 2014, Neuron.

[35]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[36]  Stephen W. Wilson,et al.  Left-Right Asymmetry Is Required for the Habenulae to Respond to Both Visual and Olfactory Stimuli , 2014, Current Biology.

[37]  Thomas Brox,et al.  ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains , 2012, Nature Methods.

[38]  John D. Storey,et al.  Statistical significance of variables driving systematic variation in high-dimensional data , 2013, Bioinform..

[39]  Y. Kuan,et al.  Neuropilin asymmetry mediates a left-right difference in habenular connectivity , 2007, Development.

[40]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[41]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[42]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[43]  H. Okamoto Neurobiology: Sensory Lateralization in the Fish Brain , 2014, Current Biology.

[44]  S. Higashijima,et al.  The habenula is crucial for experience-dependent modification of fear responses in zebrafish , 2010, Nature Neuroscience.

[45]  Y. Nishimura,et al.  A High-Throughput Fluorescence-Based Assay System for Appetite-Regulating Gene and Drug Screening , 2012, PloS one.

[46]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[47]  Andrew McDavid,et al.  Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments , 2012, Bioinform..

[48]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .

[49]  Gonçalo Lopes,et al.  Development of social behavior in young zebrafish , 2015, Front. Neural Circuits.

[50]  K. Sze,et al.  Goldfish spexin: solution structure and novel function as a satiety factor in feeding control. , 2013, American journal of physiology. Endocrinology and metabolism.

[51]  Stephen W. Wilson,et al.  The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, bioRxiv.

[53]  Shan Shan Li,et al.  TUBB5 and its disease-associated mutations influence the terminal differentiation and dendritic spine densities of cerebral cortical neurons. , 2014, Human molecular genetics.

[54]  Christophe D. Proulx,et al.  Reward processing by the lateral habenula in normal and depressive behaviors , 2014, Nature Neuroscience.

[55]  K. Kawakami,et al.  Interhemispheric asymmetry of olfactory input-dependent neuronal specification in the adult brain , 2013, Nature Neuroscience.

[56]  Stephen R Quake,et al.  Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq. , 2016, Cell reports.

[57]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013 .

[58]  J. Pêgo,et al.  A Key Role for Neurotensin in Chronic-Stress-Induced Anxiety-Like Behavior in Rats , 2018, Neuropsychopharmacology.

[59]  Z. Karádi,et al.  Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation , 2018, Neuroscience & Biobehavioral Reviews.

[60]  H. Okamoto,et al.  Fear and Anxiety Regulation by Conserved Affective Circuits , 2013, Neuron.

[61]  I. Ibañez-Tallon,et al.  Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates , 2015, The Journal of comparative neurology.

[62]  Rona S. Gertner,et al.  Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells , 2013, Nature.

[63]  S. Fuss,et al.  Patterned Arrangements of Olfactory Receptor Gene Expression in Zebrafish are Established by Radial Movement of Specified Olfactory Sensory Neurons , 2017, Scientific Reports.

[64]  R. Portugues,et al.  Ontogeny of classical and operant learning behaviors in zebrafish. , 2012, Learning & memory.

[65]  Evan Z. Macosko,et al.  A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types , 2017, Nature Neuroscience.

[66]  B. Harfe,et al.  Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish , 2014, Genesis.

[67]  Ludo Waltman,et al.  A smart local moving algorithm for large-scale modularity-based community detection , 2013, The European Physical Journal B.