Adaptive image interpolation by cardinal splines in piecewise constant tension

The cardinal spline in tension is modified to allow for different tensions in different sampling intervals. Varying the tension in proportion to an index of sharp change in image brightness, we obtain image interpolation results with less ringing artifacts compared to those by the cubic spline interpolation.

[1]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[2]  D. Schweikert An Interpolation Curve Using a Spline in Tension , 1966 .

[3]  Nicola Asuni,et al.  Accuracy Improvements and Artifacts Removal in Edge Based Image Interpolation , 2008, VISAPP.

[4]  I. J. Schoenberg On Interpolation by Spline Functions and its Minimal Properties , 1988 .

[5]  Lei Zhang,et al.  An edge-guided image interpolation algorithm via directional filtering and data fusion , 2006, IEEE Transactions on Image Processing.

[6]  Isaac N. Bankman,et al.  Handbook of Medical Imaging. Processing and Analysis , 2002 .

[7]  Hyunwoo Lee,et al.  New edge-guided interpolation algorithm based on Weighted Edge Pattern Analysis , 2009, 2009 Picture Coding Symposium.

[8]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[10]  Michael Unser,et al.  Image interpolation and resampling , 2000 .

[11]  I. J. Schoenberg Cardinal Spline Interpolation , 1987 .

[12]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[13]  Jin-Jang Leou,et al.  An adaptive image interpolation algorithm for image/video processing , 2001, Pattern Recognit..

[14]  Jieqing Tan,et al.  Adaptive osculatory rational interpolation for image processing , 2006 .

[15]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .

[16]  On approximation theory: Eds. P.L. Butzer and J. Korevaar, Basel-Stuttgart, Birkhauser, 1964, XVI + pp. 261☆ , 1967 .

[17]  Kimmo Berg,et al.  Interpretation of Lagrange multipliers in nonlinear pricing problem , 2010, Optim. Lett..

[18]  Michael Unser,et al.  Fast B-spline Transforms for Continuous Image Representation and Interpolation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  John E. Lavery,et al.  Geometric dual formulation for first-derivative-based univariate cubic L1 splines , 2008, J. Glob. Optim..

[20]  Kazuo Toraichi,et al.  Periodic spline orthonormal bases , 1988 .

[21]  John C. Holladay,et al.  A smoothest curve approximation , 1957 .

[22]  Luming Liang Image Interpolation by Blending Kernels , 2008, IEEE Signal Processing Letters.

[23]  Michael Unser,et al.  Polynomial spline signal approximations: Filter design and asymptotic equivalence with Shannon's sampling theorem , 1992, IEEE Trans. Inf. Theory.

[24]  Masaru Kamada,et al.  Two-dimensional spline interpolation for image reconstruction , 1988, Pattern Recognit..

[25]  R. E. Kalman,et al.  Controllability of linear dynamical systems , 1963 .

[26]  Hao Jiang,et al.  A new direction adaptive scheme for image interpolation , 2002, Proceedings. International Conference on Image Processing.

[27]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[28]  Jan Modersitzki,et al.  A kernel representation for exponential splines with global tension , 2009, Electronic Imaging.

[29]  Hsieh Hou,et al.  Cubic splines for image interpolation and digital filtering , 1978 .

[30]  Ebrahim Nasrabadi,et al.  Dynamic shortest path problems with time-varying costs , 2010, Optim. Lett..